On a Generalization of a Theorem of Meyer-König.
The search session has expired. Please query the service again.
Page 1 Next
Mangalam R. Parameswaran (1978)
Mathematische Zeitschrift
Xhevat Z. Krasniqi (2012)
Mathematica Bohemica
In the paper, we prove two theorems on summability, , of orthogonal series. Several known and new results are also deduced as corollaries of the main results.
Mishra, K.N., Srivastava, R.S.L. (1983/1984)
Portugaliae mathematica
Hüseyin Bor (1991)
Commentationes Mathematicae Universitatis Carolinae
In this paper a theorem on summability factors, which generalizes a theorem of Mishra and Srivastava [MS] on summability factors, has been proved.
Özarslan, Hikmet S. (2001)
International Journal of Mathematics and Mathematical Sciences
Bor, Hüseyin (2001)
International Journal of Mathematics and Mathematical Sciences
Jozef Antoni (1978)
Mathematica Slovaca
Tibor Šalát (1976)
Czechoslovak Mathematical Journal
Leindler, Laszlo (2007)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Leindler, Laszlo (2008)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Cihan Orhan (1990)
Mathematica Slovaca
Savaş, Ekrem (2007)
Journal of Inequalities and Applications [electronic only]
A. Nihal Tuncer (2002)
Annales Polonici Mathematici
Using δ-quasi-monotone and any almost increasing sequences we prove a theorem on summability factors of infinite series, which generalizes a theorem of Mazhar [7] on summability factors.
Rhoades, B.E., Savaş, Ekrem (2002)
International Journal of Mathematics and Mathematical Sciences
Peter Eliaš (2003)
Acta Universitatis Carolinae. Mathematica et Physica
Ali M. Sarigöl (1992)
Mathematica Slovaca
Parashar, Vinod K. (1981)
Publications de l'Institut Mathématique. Nouvelle Série
Sulaiman, W.T. (1988)
Portugaliae mathematica
Saxena, Santosh Kr. (2009)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Ekrem Savaş, Fatih Nuray (1993)
Mathematica Slovaca
Page 1 Next