On a Tauberian theorem for Euler summability.
Page 1
P. Erdös (1952)
Publications de l'Institut Mathématique [Elektronische Ressource]
Çanak, İbrahim, Dik, Mehmet, Dik, Filiz (2005)
International Journal of Mathematics and Mathematical Sciences
J.L. Geluk (1989)
Publications de l'Institut Mathématique
Yu. N. Drozzinov, B. I. Zavailov (1990)
Publications de l'Institut Mathématique
Jiří Čížek (1980)
Czechoslovak Mathematical Journal
A.A. Balkema (2002)
Publications de l'Institut Mathématique
Jiří Čížek (1999)
Czechoslovak Mathematical Journal
Hilberdink, Titus (1996)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Peetre, Jaak (1968)
Portugaliae mathematica
Nicholas H. Bingham (1984)
Mathematische Zeitschrift
Ferenc Móricz (2004)
Colloquium Mathematicae
Schmidt’s Tauberian theorem says that if a sequence (xk) of real numbers is slowly decreasing and , then . The notion of slow decrease includes Hardy’s two-sided as well as Landau’s one-sided Tauberian conditions as special cases. We show that ordinary summability (C,1) can be replaced by the weaker assumption of statistical summability (C,1) in Schmidt’s theorem. Two recent theorems of Fridy and Khan are also corollaries of our Theorems 1 and 2. In the Appendix, we present a new proof of Vijayaraghavan’s...
Caslav V. Stanojevic (1987/1988)
Mathematische Annalen
Page 1