Normal structure and fixed points of nonexpansive maps in general topological spaces.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Aamri, M., El Moutawakil, D. (2002)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Boris Sagraloff (1979)
Journal für die reine und angewandte Mathematik
Juan Jorge Schäffer (1970)
Mathematische Zeitschrift
Darsow, William F., Olsen, Elwood T. (1995)
International Journal of Mathematics and Mathematical Sciences
Jameson, G.J.O., Lashkaripour, R. (2002)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
N. J. Young (1978)
Commentationes Mathematicae Universitatis Carolinae
Appel, Matthew J., Bourdon, Paul S., Thrall, John J. (1996)
Experimental Mathematics
Ermanno Giacalone, Fulvio Ricci (1988)
Mathematische Annalen
Bernal-González, Luis (2004)
Mathematica Pannonica
Boettcher, A., Grudsky, S.M., Silbermann, B. (1997)
The New York Journal of Mathematics [electronic only]
Veselý, L. (1992)
Acta Mathematica Universitatis Comenianae. New Series
Janusz Kaptur (1979)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Jacek Zienkiewicz (2003)
Colloquium Mathematicae
Let G be the simplest nilpotent Lie group of step 3. We prove that the densities of the semigroup generated by the sublaplacian on G are not real-analytic.
Milan Tvrdý (1975)
Czechoslovak Mathematical Journal
Chen, Y.Q., Cho, Y.J., Kim, J.K., Lee, B.S. (2006)
Fixed Point Theory and Applications [electronic only]
Jozef Banas, Antonio Martinón (1990)
Extracta Mathematicae
The notion of a measure of noncompactness turns out to be a very important and useful tool in many branches of mathematical analysis. The current state of this theory and its applications are presented in the books [1,4,11] for example.The notion of a measure of weak noncompactness was introduced by De Blasi [8] and was subsequently used in numerous branches of functional analysis and the theory of differential and integral equations (cf. [2,3,9,10,11], for instance).In this note we summarize our...
Li, Fang, Liu, James H. (2010)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Makiko Nisio (1985)
Banach Center Publications
Svatopluk Fučík, Dien Hien Tran (1973)
Commentationes Mathematicae Universitatis Carolinae
Manuel González, Antonio Martinón (1991)
Extracta Mathematicae
Let X and Y be infinite dimensional Banach spaces and let L(X,Y) be the class of all (linear continuous) operators acting between X and Y. Mil'man [5] introduced the isometry spectrum I(T) of T ∈ L(X,Y) in the following way:I(T) = {α ≥ 0: ∀ ε > 0, ∃M ∈ S∞(X), ∀x ∈ SM, | ||Tx|| - α | < ε}},where S∞(X) is the set of all infinite dimensional closed subspaces of X and SM := {x ∈ M: ||x|| = 1} is the unit sphere of M ∈ S∞(X). (...)