Weighted geometric mean inequalities over cones in .
Many problems in analysis are described as weighted norm inequalities that have given rise to different classes of weights, such as -weights of Muckenhoupt and -weights of Ariño and Muckenhoupt. Our purpose is to show that different classes of weights are related by means of composition with classical transforms. A typical example is the family of weights w for which the Hardy transform is -bounded. A -weight is precisely one for which its Hardy transform is in , and also a weight whose indefinite...
We prove some weighted endpoint estimates for some multilinear operators related to certain singular integral operators on Herz and Herz type Hardy spaces.
We prove weighted inequalities for commutators of one-sided singular integrals (given by a Calder’on-Zygmund kernel with support in ) with BMO functions. We give the one-sided version of the results in C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl., vol. 3 (6), 1997, pages 743–756 and C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., vol 128 (1), 1995, pages...
We consider Bergman projections and some new generalizations of them on weighted -spaces. A new reproducing formula is obtained. We show the boundedness of these projections for a large family of weights v which tend to 0 at the boundary with a polynomial speed. These weights may even be nonradial. For logarithmically decreasing weights bounded projections do not exist. In this case we instead consider the projective description problem for holomorphic inductive limits.
Necessary and sufficient conditions are given on the weights t, u, v, and w, in order for to hold when and are N-functions with convex, and T is the Hardy operator or a generalized Hardy operator. Weak-type characterizations are given for monotone operators and the connection between weak-type and strong-type inequalities is explored.
In this paper we give an operator theoretic version of a recent result of F. J. Martín-Reyes and A. de la Torre concerning the problem of finding necessary and sufficient conditions for a nonsingular point transformation to satisfy the Pointwise Ergodic Theorem in Lp. We consider a positive conservative contraction T on L1 of a σ-finite measure space (X, F, μ), a fixed function e in L1 with e > 0 on X, and two positive measurable functions V and W on X. We then characterize the pairs (V,W)...