Page 1

Displaying 1 – 14 of 14

Showing per page

Dimensions of components of tensor products of representations of linear groups with applications to Beurling-Fourier algebras

Benoît Collins, Hun Hee Lee, Piotr Śniady (2014)

Studia Mathematica

We give universal upper bounds on the relative dimensions of isotypic components of a tensor product of representations of the linear group GL(n) and universal upper bounds on the relative dimensions of irreducible components of a tensor product of representations of the special linear group SL(n). This problem is motivated by harmonic analysis problems, and we give some applications to the theory of Beurling-Fourier algebras.

The Rotation Group

Karol Pąk (2012)

Formalized Mathematics

We introduce length-preserving linear transformations of Euclidean topological spaces. We also introduce rotation which preserves orientation (proper rotation) and reverses orientation (improper rotation). We show that every rotation that preserves orientation can be represented as a composition of base proper rotations. And finally, we show that every rotation that reverses orientation can be represented as a composition of proper rotations and one improper rotation.

Currently displaying 1 – 14 of 14

Page 1