The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Consider a bifurcation problem, namely, its bifurcation equation. There is a diffeomorphism linking the actual solution set with an unfolded normal form of the bifurcation equation. The differential of this diffeomorphism is a valuable information for a numerical analysis of the imperfect bifurcation. The aim of this paper is to construct algorithms for a computation of . Singularity classes containing bifurcation points with , are considered.
In this paper we introduce the notion of modified Nash triviality for a family of zero sets of real polynomial map-germs as a desirable one. We first give a Nash isotopy lemma which is a useful tool to show triviality.Then, using it, we prove two types of modified Nash triviality theorem and a finite classification theorem for this triviality. These theorems strengthen similar topological results.
Singular projections of generic 2-dim surfaces in ℝ³ with singular boundary to 2-space are studied. The case of projections of surfaces with nonsingular boundary has been treated by Bruce and Giblin. The aim of this paper is to generalise these results to the simplest singular case where the boundary of the surface consists of two transversally intersecting lines. Local models for germs of generic singular projections of corank ≤ 1 and codimension ≤ 3 are given. We also present geometrical realisations...
We prove that if f:(ℝⁿ,0) → (ℝⁿ,0) is an analytic map germ such that and f satisfies a certain non-degeneracy condition with respect to a Newton polyhedron Γ₊ ⊆ ℝⁿ, then the index of f only depends on the principal parts of f with respect to the compact faces of Γ₊. In particular, we obtain a known result on the index of semi-weighted-homogeneous map germs. We also discuss non-degenerate vector fields in the sense of Khovanskiĭand special applications of our results to planar analytic vector fields....
In this paper we study singularities of certain surfaces and curves associated with the family of rectifying planes along space curves. We establish the relationships between singularities of these subjects and geometric invariants of curves which are deeply related to the order of contact with helices.
Currently displaying 1 –
7 of
7