Radius and profile of random planar maps with faces of arbitrary degrees.
Page 1
Miermont, Grégory, Weill, Mathilde (2008)
Electronic Journal of Probability [electronic only]
Luis A. Santaló (1980)
Stochastica
Our purpose is the study of the so called mixed random mosaics, formed by superposition of a given tesellation, not random, of congruent convex polygons and a homogeneous Poisson line process. We give the mean area, the mean perimeter and the mean number of sides of the polygons into which such mosaics divide the plane.
Shlomo Reisner (1985)
Mathematica Scandinavica
Imre Bárány, Christian Buchta (1993)
Mathematische Annalen
R. Schneider, F. Affentranger (1992)
Discrete & computational geometry
František Straka, Josef Štěpán (1993)
Mathematica Slovaca
František Straka (1988)
Commentationes Mathematicae Universitatis Carolinae
Caristi, Giuseppe (2008)
APPS. Applied Sciences
Y. Gordon, A. E. Litvak, A. Pajor, N. Tomczak-Jaegermann (2007)
Studia Mathematica
We show that, given an n-dimensional normed space X, a sequence of independent random vectors , uniformly distributed in the unit ball of X*, with high probability forms an ε-net for this unit ball. Thus the random linear map defined by embeds X in with at most 1 + ε norm distortion. In the case X = ℓ₂ⁿ we obtain a random 1+ε-embedding into with asymptotically best possible relation between N, n, and ε.
Ai Hua Fan, Jean-Pierre Kahane (1993)
Annales de l'I.H.P. Probabilités et statistiques
Spencer, Joel (1997)
The Electronic Journal of Combinatorics [electronic only]
Yu. Davydov, A. M. Vershik (1998)
Annales de l'I.H.P. Probabilités et statistiques
M. Laquière (1880)
Bulletin de la Société Mathématique de France
Michael I. Taksar (1980)
Séminaire de probabilités de Strasbourg
Y.M. Baryshnikov, R.A. Vitale (1994)
Discrete & computational geometry
Fernando Affentranger (1988)
Elemente der Mathematik
Page 1