Page 1

Displaying 1 – 9 of 9

Showing per page

Markov chains approximation of jump–diffusion stochastic master equations

Clément Pellegrini (2010)

Annales de l'I.H.P. Probabilités et statistiques

Quantum trajectories are solutions of stochastic differential equations obtained when describing the random phenomena associated to quantum continuous measurement of open quantum system. These equations, also called Belavkin equations or Stochastic Master equations, are usually of two different types: diffusive and of Poisson-type. In this article, we consider more advanced models in which jump–diffusion equations appear. These equations are obtained as a continuous time limit of martingale problems...

Moderate deviations for the Durbin–Watson statistic related to the first-order autoregressive process

S. Valère Bitseki Penda, Hacène Djellout, Frédéric Proïa (2014)

ESAIM: Probability and Statistics

The purpose of this paper is to investigate moderate deviations for the Durbin–Watson statistic associated with the stable first-order autoregressive process where the driven noise is also given by a first-order autoregressive process. We first establish a moderate deviation principle for both the least squares estimator of the unknown parameter of the autoregressive process as well as for the serial correlation estimator associated with the driven noise. It enables us to provide a moderate deviation...

Currently displaying 1 – 9 of 9

Page 1