On infinite-server queues with cyclically dependent service times
We study the problem of scheduling jobs on a serial batching machine to minimize total tardiness. Jobs of the same batch start and are completed simultaneously and the length of a batch equals the sum of the processing times of its jobs. When a new batch starts, a constant setup time occurs. This problem s-batch is known to be NP-Hard in the ordinary sense. In this paper we show that it is solvable in pseudopolynomial time by dynamic programming.
We study the problem of scheduling jobs on a serial batching machine to minimize total tardiness. Jobs of the same batch start and are completed simultaneously and the length of a batch equals the sum of the processing times of its jobs. When a new batch starts, a constant setup time s occurs. This problem 1|s-batch | ∑Ti is known to be NP-Hard in the ordinary sense. In this paper we show that it is solvable in pseudopolynomial time by dynamic programming.
Retrial queueing systems are characterized by the requirement that customers finding the service area busy must join the retrial group and reapply for service at random intervals. This paper deals with the M/G/1 retrial queue subjected to breakdowns. We use its stochastic decomposition property to approximate the model performance in the case of general retrial times.
Retrial queueing systems are characterized by the requirement that customers finding the service area busy must join the retrial group and reapply for service at random intervals. This paper deals with the M/G/1 retrial queue subjected to breakdowns. We use its stochastic decomposition property to approximate the model performance in the case of general retrial times.
This paper studies the computational complexity of the proper interval colored graph problem (PICG), when the input graph is a colored caterpillar, parameterized by hair length. In order prove our result we establish a close relationship between the PICG and a graph layout problem the proper colored layout problem (PCLP). We show a dichotomy: the PICG and the PCLP are NP-complete for colored caterpillars of hair length ≥2, while both problems are in P for colored caterpillars of hair length <2. For...