Sémantique du parallélisme et du choix du langage Electre
This paper sketches the state of the art in the application of mechanical theorem provers to the verification of commercial computer hardware and software. While the paper focuses on the theorem proving system ACL2, developed by the two authors, it references much related work in formal methods. The paper is intended to satisfy the curiosity of readers interested in logic and artificial intelligence as to the role of mechanized theorem proving in hardware and software design today. In addition,...
A finite element code, called ZéBuLoN was parallelised some years ago. This code is entirely written using an object oriented framework (C++ is the support language). The aim of this paper is to present some problems which arose during the parallelization, and some innovative solutions. Especially, a new concept of message passing is presented which allows to take into account SMP machines while still using the parallel virtual machine abstraction.
A finite element code, called ZéBuLoN was parallelised some years ago. This code is entirely written using an object oriented framework (C++ is the support language). The aim of this paper is to present some problems which arose during the parallelization, and some innovative solutions. Especially, a new concept of message passing is presented which allows to take into account SMP machines while still using the parallel virtual machine abstraction.
Frameworks for interactive theorem proving give the user explicit control over the construction of proofs based on meta languages that contain dedicated control structures for describing proof construction. Such languages are not easy to master and thus contribute to the already long list of skills required by prospective users of interactive theorem provers. Most users, however, only need a convenient formalism that allows to introduce new rules with minimal overhead. On the the other hand, rules...