Comparison of the Efficiency of Two Algorithms Which Solve the Shortest Path Problem With an Emotional Agent
The simultaneous problem of consensus and trajectory tracking of linear multi-agent systems is considered in this paper, where the dynamics of each agent is represented by a single-input single-output linear system. In order to solve this problem, a distributed control strategy is proposed in this work, where the trajectory and the formation of the agents are achieved asymptotically even in the presence of switching communication topologies and smooth formation changes, and ensuring the closed-loop...
In this paper, we consider a multi-agent consensus problem with an active leader and variable interconnection topology. The dynamics of the active leader is given in a general form of linear system. The switching interconnection topology with communication delay among the agents is taken into consideration. A neighbor-based estimator is designed for each agent to obtain the unmeasurable state variables of the dynamic leader, and then a distributed feedback control law is developed to achieve consensus....