Displaying 121 – 140 of 166

Showing per page

Shape Sensitivity Analysis of the Dirichlet Laplacian in a Half-Space

Cherif Amrouche, Šárka Nečasová, Jan Sokołowski (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Material and shape derivatives for solutions to the Dirichlet Laplacian in a half-space are derived by an application of the speed method. The proposed method is general and can be used for shape sensitivity analysis in unbounded domains for the Neumann Laplacian as well as for the elasticity boundary value problems.

Simulation and design of extraction and separation fluidic devices

Bijan Mohammadi, Juan G. Santiago (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present the combination of a state control and shape design approaches for the optimization of micro-fluidic channels used for sample extraction and separation of chemical species existing in a buffer solution. The aim is to improve the extraction and identification capacities of electroosmotic micro-fluidic devices by avoiding dispersion of the extracted advected band.

Simulation and design of extraction and separation fluidic devices

Bijan Mohammadi, Juan G. Santiago (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present the combination of a state control and shape design approaches for the optimization of micro-fluidic channels used for sample extraction and separation of chemical species existing in a buffer solution. The aim is to improve the extraction and identification capacities of electroosmotic micro-fluidic devices by avoiding dispersion of the extracted advected band.

Sulla nozione di stato per materiali viscoelastici di tipo «rate»

Dario Graffi, Mauro Fabrizio (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considera un materiale viscoelastico lineare in cui la funzione di rilassamento è la somma di n esponenziali. Lo stato σ di questi sistemi non è necessariamente assegnato dalla storia passata di E , ma è sufficiente fornire il valore iniziale del tensore di deformazione E , del tensore degli sforzi T e delle ( n 1 ) sue derivate. Infine per questi materiali abbiamo ottenuto una espressione dell'energia libera come una funzione dello stato di dimensione finita σ .

The assessment of the residual post-transient stresses in elastic-perfectly plastic solids subjected to cyclic loads

Castrenze Polizzotto (1993)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

For elastic-perfectly plastic solids (or structures) subjected to quasi-static cyclic loads, variational methods are presented for the direct eyâluation of the post-transient residual stresses, that is, the residual stresses in the structure at the end of the transient response phase, consequence of the plastic strains therein produced and crucial to predict the subsequent steady structural behaviour. The problem of the evaluation of the number of cycles spanned by the transient response is also...

The extended adjoint method

Stanislas Larnier, Mohamed Masmoudi (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Searching for the optimal partitioning of a domain leads to the use of the adjoint method in topological asymptotic expansions to know the influence of a domain perturbation on a cost function. Our approach works by restricting to local subproblems containing the perturbation and outperforms the adjoint method by providing approximations of higher order. It is a universal tool, easily adapted to different kinds of real problems and does not need the fundamental solution of the problem; furthermore...

The extended adjoint method

Stanislas Larnier, Mohamed Masmoudi (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Searching for the optimal partitioning of a domain leads to the use of the adjoint method in topological asymptotic expansions to know the influence of a domain perturbation on a cost function. Our approach works by restricting to local subproblems containing the perturbation and outperforms the adjoint method by providing approximations of higher order. It is a universal tool, easily adapted to different kinds of real problems and does not need...

The Mean-Variance-CVaR model for Portfolio Optimization Modeling using a Multi-Objective Approach Based on a Hybrid Method

R. Aboulaich, R. Ellaia, S. El Moumen (2010)

Mathematical Modelling of Natural Phenomena

In this paper we present a new hybrid method, called SASP method. We propose the hybridization of two methods, the simulated annealing (SA), which belong to the class of global optimization based on the principles of thermodynamics, and the descent method were we estimate the gradient using the simultaneous perturbation. This hybrid method gives better results. We use the Normal Boundary Intersection approach (NBI) based on the SASP method to solve...

The topological asymptotic expansion for the Quasi-Stokes problem

Maatoug Hassine, Mohamed Masmoudi (2004)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we propose a topological sensitivity analysis for the Quasi-Stokes equations. It consists in an asymptotic expansion of a cost function with respect to the creation of a small hole in the domain. The leading term of this expansion is related to the principal part of the operator. The theoretical part of this work is discussed in both two and three dimensional cases. In the numerical part, we use this approach to optimize the locations of a fixed number of air injectors in an eutrophized...

The topological asymptotic expansion for the Quasi-Stokes problem

Maatoug Hassine, Mohamed Masmoudi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we propose a topological sensitivity analysis for the Quasi-Stokes equations. It consists in an asymptotic expansion of a cost function with respect to the creation of a small hole in the domain. The leading term of this expansion is related to the principal part of the operator. The theoretical part of this work is discussed in both two and three dimensional cases. In the numerical part, we use this approach to optimize the locations of a fixed number of air injectors in an eutrophized...

Topological asymptotic analysis of the Kirchhoff plate bending problem

Samuel Amstutz, Antonio A. Novotny (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal domain perturbation, like the insertion of holes, inclusions, cracks. In this work we present the calculation of the topological derivative for a class of shape functionals associated to the Kirchhoff plate bending problem, when a circular inclusion is introduced at an arbitrary point of the domain. According to the literature, the topological derivative has been fully developed...

Topological asymptotic analysis of the Kirchhoff plate bending problem

Samuel Amstutz, Antonio A. Novotny (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal domain perturbation, like the insertion of holes, inclusions, cracks. In this work we present the calculation of the topological derivative for a class of shape functionals associated to the Kirchhoff plate bending problem, when a circular inclusion is introduced at an arbitrary point of the domain. According to the literature, the topological derivative has been fully developed...

Currently displaying 121 – 140 of 166