Page 1

Displaying 1 – 9 of 9

Showing per page

A simple mechanical model to analyse the rocking and sliding response of rigid blocks to earthquakes

Giancarlo Bilotti, Leonardo Giliberti (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In order to study the effects of earthquakes on tombstones and monumental columns in recent years the dynamical analysis of rigid blocks subjected to ground accelerations has interested many researchers. Mainly, the rocking motion has been investigated and many numerical difficulties have been pointed out in such analysis [1-2-3-4]. Some computational advantages can be obtained by modelling the bonding between two blocks or between block and foundation by means of an elastic layer of Winkler's springs...

Survival analysis on data streams: Analyzing temporal events in dynamically changing environments

Ammar Shaker, Eyke Hüllermeier (2014)

International Journal of Applied Mathematics and Computer Science

In this paper, we introduce a method for survival analysis on data streams. Survival analysis (also known as event history analysis) is an established statistical method for the study of temporal “events” or, more specifically, questions regarding the temporal distribution of the occurrence of events and their dependence on covariates of the data sources. To make this method applicable in the setting of data streams, we propose an adaptive variant of a model that is closely related to the well-known...

Theoretical aspects of a multiscale analysis of the eigenoscillations of the Earth.

Volker Michel (2003)

Revista Matemática Complutense

The elastic behaviour of the Earth, including its eigenoscillations, is usually described by the Cauchy-Navier equation. Using a standard approach in seismology we apply the Helmholtz decomposition theorem to transform the Fourier transformed Cauchy-Navier equation into two non-coupled Helmholtz equations and then derive sequences of fundamental solutions for this pair of equations using the Mie representation. Those solutions are denoted by the Hansen vectors Ln,j, Mn,j, and Nn,j in geophysics....

Currently displaying 1 – 9 of 9

Page 1