Page 1

Displaying 1 – 13 of 13

Showing per page

Borsuk-Ulam type theorems

Adam Idzik (1995)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

A generalization of the theorem of Bajmóczy and Bárány which in turn is a common generalization of Borsuk's and Radon's theorem is presented. A related conjecture is formulated.

Bounds for the number of meeting edges in graph partitioning

Qinghou Zeng, Jianfeng Hou (2017)

Czechoslovak Mathematical Journal

Let G be a weighted hypergraph with edges of size at most 2. Bollobás and Scott conjectured that G admits a bipartition such that each vertex class meets edges of total weight at least ( w 1 - Δ 1 ) / 2 + 2 w 2 / 3 , where w i is the total weight of edges of size i and Δ 1 is the maximum weight of an edge of size 1. In this paper, for positive integer weighted hypergraph G (i.e., multi-hypergraph), we show that there exists a bipartition of G such that each vertex class meets edges of total weight at least ( w 0 - 1 ) / 6 + ( w 1 - Δ 1 ) / 3 + 2 w 2 / 3 , where w 0 is the number...

Bounds for the rainbow connection number of graphs

Ingo Schiermeyer (2011)

Discussiones Mathematicae Graph Theory

An edge-coloured graph G is rainbow-connected if any two vertices are connected by a path whose edges have distinct colours. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow-connected. In this paper we show some new bounds for the rainbow connection number of graphs depending on the minimum degree and other graph parameters. Moreover, we discuss sharpness of some of these bounds.

Bounds on the Signed 2-Independence Number in Graphs

Lutz Volkmann (2013)

Discussiones Mathematicae Graph Theory

Let G be a finite and simple graph with vertex set V (G), and let f V (G) → {−1, 1} be a two-valued function. If ∑x∈N|v| f(x) ≤ 1 for each v ∈ V (G), where N[v] is the closed neighborhood of v, then f is a signed 2-independence function on G. The weight of a signed 2-independence function f is w(f) =∑v∈V (G) f(v). The maximum of weights w(f), taken over all signed 2-independence functions f on G, is the signed 2-independence number α2s(G) of G. In this work, we mainly present upper bounds on α2s(G),...

Currently displaying 1 – 13 of 13

Page 1