Page 1 Next

Displaying 1 – 20 of 177

Showing per page

A contribution to Runge-Kutta formulas of the 7th order with rational coefficients for systems of differential equations of the first order

Anton Huťa, Vladimír Penjak (1984)

Aplikace matematiky

The purpose of this article is to find the 7th order formulas with rational parameters. The formulas are of the 11th stage. If we compare the coefficients of the development i = 1 h i i ! d i - 1 d x i - 1 𝐟 x , 𝐲 ( x ) up to h 7 with the development given by successive insertion into the formula h . f i ( k 0 , k 1 , ... , k i - 1 ) for i = 1 , 2 , ... , 10 and k = i = 0 10 p i , k i we obtain a system of 59 condition equations with 65 unknowns (except, the 1st one, all equations are nonlinear). As the solution of this system we get the parameters of the 7th order Runge-Kutta formulas as rational numbers.

A Finite Element Model Based on Discontinuous Galerkin Methods on Moving Grids for Vertebrate Limb Pattern Formation

J. Zhu, Y.-T. Zhang, S. A. Newman, M. S. Alber (2009)

Mathematical Modelling of Natural Phenomena

Skeletal patterning in the vertebrate limb, i.e., the spatiotemporal regulation of cartilage differentiation (chondrogenesis) during embryogenesis and regeneration, is one of the best studied examples of a multicellular developmental process. Recently [Alber et al., The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb, Bulletin of Mathematical Biology, 2008, v70, pp. 460-483], a simplified two-equation reaction-diffusion system was developed to describe the interaction...

Currently displaying 1 – 20 of 177

Page 1 Next