Page 1

Displaying 1 – 19 of 19

Showing per page

Massive parallel implementation of ODE solvers

Fischer, Cyril (2013)

Programs and Algorithms of Numerical Mathematics

The presented contribution maps the possibilities of exploitation of the massive parallel computational hardware (namely GPU) for solution of the initial value problems of ordinary differential equations. Two cases are discussed: parallel solution of a single ODE and parallel execution of scalar ODE solvers. Whereas the advantages of the special architecture in the case of a single ODE are problematic, repeated solution of a single ODE for different data can profit from the parallel...

Mathematical analysis of the optimizing acquisition and retention over time problem

Adi Ditkowski (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

While making informed decisions regarding investments in customer retention and acquisition becomes a pressing managerial issue, formal models and analysis, which may provide insight into this topic, are still scarce. In this study we examine two dynamic models for optimal acquisition and retention models of a monopoly, the total cost and the cost per customer models. These models are analytically analyzed using classical, direct, methods and asymptotic expansions (for the total cost model). In...

Mathematical analysis of the optimizing acquisition and retention over time problem

Adi Ditkowski (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

While making informed decisions regarding investments in customer retention and acquisition becomes a pressing managerial issue, formal models and analysis, which may provide insight into this topic, are still scarce. In this study we examine two dynamic models for optimal acquisition and retention models of a monopoly, the total cost and the cost per customer models. These models are analytically analyzed using classical, direct, methods and asymptotic expansions (for the total cost model). In...

Monte Carlo Random Walk Simulations Based on Distributed Order Differential Equations with Applications to Cell Biology

Andries, Erik, Umarov, Sabir, Steinberg, Stanly (2006)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 65C05, 60G50, 39A10, 92C37In this paper the multi-dimensional Monte-Carlo random walk simulation models governed by distributed fractional order differential equations (DODEs) and multi-term fractional order differential equations are constructed. The construction is based on the discretization leading to a generalized difference scheme (containing a finite number of terms in the time step and infinite number of terms in the space step) of the Cauchy problem for...

Currently displaying 1 – 19 of 19

Page 1