The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The representation type of tensor product algebras of finite-dimensional algebras is considered. The characterization of algebras A, B such that A ⊗ B is of tame representation type is given in terms of the Gabriel quivers of the algebras A, B.
Continuing the paper [Le], we give criteria for the incidence algebra of an arbitrary finite partially ordered set to be of tame representation type. This completes our result in [Le], concerning completely separating incidence algebras of posets.
We prove that a completely separating incidence algebra of a partially ordered set is of tame representation type if and only if the associated Tits integral quadratic form is weakly non-negative.
Let A be a finite-dimensional algebra over an algebraically closed field. The algebra A is called locally hereditary if any local left ideal of A is projective. We give criteria, in terms of the Tits quadratic form, for a locally hereditary algebra to be of tame representation type. Moreover, the description of all representation-tame locally hereditary algebras is completed.
We describe all finite-dimensional algebras A over an algebraically closed field for which the algebra of 2×2 upper triangular matrices over A is of tame representation type. Moreover, the algebras A for which is of polynomial growth (respectively, domestic, of finite representation type) are also characterized.
The incidence coalgebras of interval finite posets I and their comodules are studied by means of the reduced Euler integral quadratic form , where K is an algebraically closed field. It is shown that for any such coalgebra the tameness of the category of finite-dimensional left -modules is equivalent to the tameness of the category of finitely copresented left -modules. Hence, the tame-wild dichotomy for the coalgebras is deduced. Moreover, we prove that for an interval finite ̃ *ₘ-free...
With the help of Galois coverings, we describe the tame tensor products of basic, connected, nonsimple, finite-dimensional algebras A and B over an algebraically closed field K. In particular, the description of all tame group algebras AG of finite groups G over finite-dimensional algebras A is completed.
Download Results (CSV)