The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Representation-tame locally hereditary algebras

Zbigniew Leszczyński — 2004

Colloquium Mathematicae

Let A be a finite-dimensional algebra over an algebraically closed field. The algebra A is called locally hereditary if any local left ideal of A is projective. We give criteria, in terms of the Tits quadratic form, for a locally hereditary algebra to be of tame representation type. Moreover, the description of all representation-tame locally hereditary algebras is completed.

Tame triangular matrix algebras

Zbigniew LeszczyńskiAndrzej Skowroński — 2000

Colloquium Mathematicae

We describe all finite-dimensional algebras A over an algebraically closed field for which the algebra T 2 ( A ) of 2×2 upper triangular matrices over A is of tame representation type. Moreover, the algebras A for which T 2 ( A ) is of polynomial growth (respectively, domestic, of finite representation type) are also characterized.

Incidence coalgebras of interval finite posets of tame comodule type

Zbigniew LeszczyńskiDaniel Simson — 2015

Colloquium Mathematicae

The incidence coalgebras K I of interval finite posets I and their comodules are studied by means of the reduced Euler integral quadratic form q : ( I ) , where K is an algebraically closed field. It is shown that for any such coalgebra the tameness of the category K I - c o m o d of finite-dimensional left K I -modules is equivalent to the tameness of the category K I - C o m o d f c of finitely copresented left K I -modules. Hence, the tame-wild dichotomy for the coalgebras K I is deduced. Moreover, we prove that for an interval finite ̃ *ₘ-free...

Tame tensor products of algebras

Zbigniew LeszczyńskiAndrzej Skowroński — 2003

Colloquium Mathematicae

With the help of Galois coverings, we describe the tame tensor products A K B of basic, connected, nonsimple, finite-dimensional algebras A and B over an algebraically closed field K. In particular, the description of all tame group algebras AG of finite groups G over finite-dimensional algebras A is completed.

Page 1

Download Results (CSV)