Tame triangular matrix algebras

Zbigniew Leszczyński; Andrzej Skowroński

Colloquium Mathematicae (2000)

  • Volume: 86, Issue: 2, page 259-303
  • ISSN: 0010-1354

Abstract

top
We describe all finite-dimensional algebras A over an algebraically closed field for which the algebra T 2 ( A ) of 2×2 upper triangular matrices over A is of tame representation type. Moreover, the algebras A for which T 2 ( A ) is of polynomial growth (respectively, domestic, of finite representation type) are also characterized.

How to cite

top

Leszczyński, Zbigniew, and Skowroński, Andrzej. "Tame triangular matrix algebras." Colloquium Mathematicae 86.2 (2000): 259-303. <http://eudml.org/doc/210855>.

@article{Leszczyński2000,
abstract = {We describe all finite-dimensional algebras A over an algebraically closed field for which the algebra $T_2(A)$ of 2×2 upper triangular matrices over A is of tame representation type. Moreover, the algebras A for which $T_2(A)$ is of polynomial growth (respectively, domestic, of finite representation type) are also characterized.},
author = {Leszczyński, Zbigniew, Skowroński, Andrzej},
journal = {Colloquium Mathematicae},
keywords = {finite representation type; classification by convex subcategories; Galois coverings; triangular matrix algebras; tame representation type; domestic type; algebras of polynomial growth; Auslander algebras},
language = {eng},
number = {2},
pages = {259-303},
title = {Tame triangular matrix algebras},
url = {http://eudml.org/doc/210855},
volume = {86},
year = {2000},
}

TY - JOUR
AU - Leszczyński, Zbigniew
AU - Skowroński, Andrzej
TI - Tame triangular matrix algebras
JO - Colloquium Mathematicae
PY - 2000
VL - 86
IS - 2
SP - 259
EP - 303
AB - We describe all finite-dimensional algebras A over an algebraically closed field for which the algebra $T_2(A)$ of 2×2 upper triangular matrices over A is of tame representation type. Moreover, the algebras A for which $T_2(A)$ is of polynomial growth (respectively, domestic, of finite representation type) are also characterized.
LA - eng
KW - finite representation type; classification by convex subcategories; Galois coverings; triangular matrix algebras; tame representation type; domestic type; algebras of polynomial growth; Auslander algebras
UR - http://eudml.org/doc/210855
ER -

References

top
  1. [1] I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. 56 1988 417-450 Zbl0617.16018
  2. [2] M. Auslander, M. I. Platzeck and I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 1979 1-46 
  3. [3] M. Auslander and I. Reiten, On the representation type of triangular matrix rings, J. London Math. Soc. 12 1976 371-382 
  4. [4] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1985. 
  5. [5] R. Bautista, P. Gabriel, A. V. Roiter and L. Salmerón, Representation-finite algebras and multiplicative bases, Invent. Math. 81 1985 217-285 Zbl0575.16012
  6. [6] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 1983 461-469 Zbl0532.16020
  7. [7] K. Bongartz, Critical simply connected algebras, Manuscripta Math. 46 1984 117-136 Zbl0537.16024
  8. [8] K. Bongartz, A criterion for finite representation type, Math. Ann. 269 1984 1-12 
  9. [9] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 69 1981 331-378 Zbl0482.16026
  10. [10] S. Brenner, Large indecomposable modules over a ring of 2×2 triangular matrices, Bull. London Math. Soc. 3 1971 333-336 Zbl0223.16012
  11. [11] S. Brenner, On two questions of M. Auslander, ibid. 4 1972 301-302 Zbl0261.16015
  12. [12] O. Bretscher and P. Gabriel, The standard form of a representation-finite algebra, Bull. Soc. Math. France 111 1983 21-40 Zbl0527.16021
  13. [13] W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 1988 451-483 Zbl0661.16026
  14. [14] W. W. Crawley-Boevey, Tame algebras and generic modules, ibid. 63 1991 241-265 Zbl0741.16005
  15. [15] P. Dowbor and A. Skowroński, On Galois coverings of tame algebras, Arch. Math. (Basel) 44 1985 522-529 Zbl0576.16029
  16. [16] P. Dowbor and A. Skowroński, On the representation type of locally bounded categories, Tsukuba J. Math. 10 1986 63-77 Zbl0604.16024
  17. [17] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 1987 311-337 Zbl0628.16019
  18. [18] P. Dräxler and A. Skowroński, Biextensions by indecomposable modules of derived regular length 2, Compositio Math. 117 1999 205-221 Zbl0959.16010
  19. [19] Yu. A. Drozd, Tame and wild matrix problems, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 242-258 
  20. [20] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Representation Theory I, Lecture Notes in Math. 831, Springer, 1980, 1-71 
  21. [21] P. Gabriel, The universal cover of a representation-finite algebra, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, 1981, 68-105 
  22. [22] D. Happel and D. Vossieck, Minimal algebras of finite representation type with preprojective component, Manuscripta Math. 42 1983 221-243 Zbl0516.16023
  23. [23] M. Hishino and I. Miyachi, Tame triangular matrix algebras over self-injective algebras, Tsukuba J. Math. 11 1987 383-391 
  24. [24] K. Igusa, M. I. Platzeck, G. Todorov and D. Zacharia, Auslander algebras of finite representation type, Comm. Algebra 15 1987 377-424 Zbl0609.16014
  25. [25] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 1989 29-47 Zbl0675.16013
  26. [26] O. Kerner and A. Skowroński, On module categories with nilpotent infinite radical, Compositio Math. 77 1991 313-333 Zbl0717.16012
  27. [27] M. Lersch, Minimal wilde Algebren, Diplomarbeit, Düsseldorf, 1987. 
  28. [28] Z. Leszczyński, l-hereditary triangular matrix algebras of tame representation type, Arch. Math. (Basel) 54 1990 25-31 
  29. [29] Z. Leszczyński, On the representation type of triangular matrix algebras over special algebras, Fund. Math. 137 1991 65-80 Zbl0727.16011
  30. [30] Z. Leszczyński, On the representation type of tensor product algebras, ibid. 144 1994 143-161 Zbl0817.16008
  31. [31] Z. Leszczyński and D. Simson, On the triangular matrix rings of finite type, J. London Math. Soc. 20 1979 386-402 Zbl0434.16022
  32. [32] Z. Leszczyński and A. Skowroński, Auslander algebras of tame representation type, in: Representation Theory of Algebras, CMS Conf. Proc. 18, Amer. Math. Soc., 1986, 475-486 Zbl0861.16010
  33. [33] N. Marmaridis, On the representation type of certain triangular matrix rings, Comm. Algebra 11 1983 1945-1964 
  34. [34] R. Nörenberg and A. Skowroński, Tame minimal non-polynomial growth simply connected algebras, Colloq. Math. 73 1997 301-330 Zbl0889.16005
  35. [35] J. A. de la Peña, Algebras with hypercritical Tits form, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa, 1990, 353-369 
  36. [36] J. A. de la Peña, On the dimension of the module-varieties of tame and wild algebras, Comm. Algebra 19 1991 1795-1807 Zbl0818.16013
  37. [37] C. M. Ringel, Tame algebras, in: Representation Theory I, Lecture Notes in Math. 831, Springer, 1980, 137-287 
  38. [38] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  39. [39] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, 1992. Zbl0818.16009
  40. [40] A. Skowroński, Tame triangular matrix algebras over Nakayama algebras, J. London Math. Soc. 34 1986 245-264 Zbl0606.16021
  41. [41] A. Skowroński, On tame triangular matrix algebras, Bull. Polish Acad. Sci. Math. 34 1986 517-523 Zbl0612.16016
  42. [42] A. Skowroński, Group algebras of polynomial growth, Manuscripta Math. 59 1987 499-516 Zbl0627.16007
  43. [43] A. Skowroński, Algebras of polynomial growth, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa, 1990, 535-468 
  44. [44] A. Skowroński, Simply connected algebras and Hochschild cohomologies, in: Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 431-447 Zbl0806.16012
  45. [45] A. Skowroński, Module categories over tame algebras, in: Representation Theory and Related Topics, CMS Conf. Proc. 19, Amer. Math. Soc., 1996, 281-313 Zbl0856.16010
  46. [46] A. Skowroński, Simply connected algebras of polynomial growth, Compositio Math. 109 1997 99-133 Zbl0889.16004
  47. [47] A. Skowroński, Tame algebras with strongly simply connected Galois coverings, Colloq. Math. 72 1997 335-351 Zbl0876.16007
  48. [48] L. Unger, The concealed algebras of the minimal wild hereditary algebras, Bayreuth. Math. Schr. 31 1990 145-154 Zbl0739.16012
  49. [49] J. Wittmann, Verkleidete zahne und minimal Algebren, Diplomarbeit, Bayreuth, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.