On finite -spaces
Let be a manifold with all structures smooth which admits a metric . Let be a linear connection on such that the associated covariant derivative satisfies for some 1-form on . Then one refers to the above setup as a Weyl structure on and says that the pair fits . If and if fits , then fits . Thus if one thinks of this as a map , then .In this paper, the author attempts to apply Weyl’s idea above to Finsler spaces. A Finsler fundamental function satisfies (i) for...
[For the entire collection see Zbl 0742.00067.]Let be the Lie algebra , and let be the universal enveloping algebra for . Let be the center of . The authors consider the chain of Lie algebras . Then is an associative algebra which is called the Gel’fand-Zetlin subalgebra of . A module is called a -module if , where the summation is over the space of characters of and , , . The authors describe several properties of - modules. For example, they prove that if for some ...
The author previously studied with F. Ilosvay and B. Kis [Publ. Math. 42, 139-144 (1993; Zbl 0796.53022)] the diffeomorphisms between two Finsler spaces and which map the geodesics of to geodesics of (geodesic mappings).Now, he investigates the geodesic mappings between a Finsler space and a Riemannian space . The main result of this paper is as follows: if is of constant curvature and the mapping is a strongly geodesic mapping then or and .
The main result of this paper determines a system of linear partial differential equations of Cauchy type whose solutions correspond exactly to holomorphically projective mappings of a given equiaffine space onto a Kählerian space. The special case of constant holomorphic curvature is also studied.
The author obtains sufficient conditions of the finite independence and the commutativity for local as well as non-local homogeneous symmetries of a large class of -dimensional evolution systems.