On the floating body problem
Author’s abstract: “We introduce the concept of the flux homomorphism for regular Poisson manifolds. First we establish a one-to-one correspondence between Poisson diffeomorphisms close to and closed foliated 1-forms close to 0. This allows to show that the group of Poisson automorphisms is locally contractible and to define the flux locally. Then, by means of the foliated cohomology, we extend this local homomorphism to a global one”.
[For the entire collection see Zbl 0699.00032.] A new cohomology theory suitable for understanding of nonlinear partial differential equations is presented. This paper is a continuation of the following paper of the author [Differ. geometry and its appl., Proc. Conf., Brno/Czech. 1986, Commun., 235-244 (1987; Zbl 0629.58033)].
We propose a simple method to obtain sharp upper bounds for the interpolation error constants over the given triangular elements. These constants are important for analysis of interpolation error and especially for the error analysis in the Finite Element Method. In our method, interpolation constants are bounded by the product of the solution of corresponding finite dimensional eigenvalue problems and constant which is slightly larger than one. Guaranteed upper bounds for these constants are obtained...
Summary: The -th order variational sequence is the quotient sequence of the De Rham sequence on the th jet prolongation of a fibered manifold, factored through its contact subsequence.In this paper, the first order variational sequence on a fibered manifold with one-dimensional base is considered. A new representation of all quotient spaces as some spaces of (global) forms is given. The factorization procedure is based on a modification of the interior Euler operator, used in the theory of (infinite)...
The global existence of weak solution is proved for the problem of the motion of several rigid bodies in a barotropic compressible fluid, under the influence of gravitational forces.