About the representation of solutions of linear elliptic equations of arbitrary order
We review some numerical analysis of an adaptive finite element method (AFEM) for a class of elliptic partial differential equations based on a perturbation argument. This argument makes use of the relationship between the general problem and a model problem, whose adaptive finite element analysis is existing, from which we get the convergence and the complexity of adaptive finite element methods for a nonsymmetric boundary value problem, an eigenvalue problem, a nonlinear boundary value problem...
Alignment classification of tensors on Lorentzian manifolds of arbitrary dimension is summarized. This classification scheme is then applied to the case of the Weyl tensor and it is shown that in four dimensions it is equivalent to the well known Petrov classification. The approaches using Bel-Debever criteria and principal null directions of the superenergy tensor are also discussed.
Selected applications of the algebraic classification of tensors on Lorentzian manifolds of arbitrary dimension are discussed. We clarify some aspects of the relationship between invariants of tensors and their algebraic class, discuss generalization of Newman-Penrose and Geroch-Held-Penrose formalisms to arbitrary dimension and study an application of the algebraic classification to the case of quadratic gravity.
From the text: The aim of this work is to advertise an algorithmic treatment of the computation of the cohomologies of semisimple Lie algebras. The base is Kostant’s result which describes the representation of the proper reductive subalgebra on the cohomologies space. We show how to (algorithmically) compute the highest weights of irreducible components of this representation using the Dynkin diagrams. The software package offers the data structures and corresponding procedures for computing...