Axiomatizácia fyzikálnych systémov a „kvantové logiky‟
In 1978, Courcelle asked for a complete set of axioms and rules for the equational theory of (discrete regular) words equipped with the operations of product, omega power and omega-op power. In this paper we find a simple set of equations and prove they are complete. Moreover, we show that the equational theory is decidable in polynomial time.
In 1978, Courcelle asked for a complete set of axioms and rules for the equational theory of (discrete regular) words equipped with the operations of product, omega power and omega-op power. In this paper we find a simple set of equations and prove they are complete. Moreover, we show that the equational theory is decidable in polynomial time.
We introduce the notion of p-ideal of a QMV-algebra and we prove that the class of all p-ideals of a QMV-algebra M is in one-to-one correspondence with the class of all congruence relations of M.
We propose some new set-theoretic axioms which imply the generalized continuum hypothesis, and we discuss some of their consequences.