The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
172
We provide an elementary proof of the fixpoint alternation hierarchy
in arithmetic, which in turn allows us to simplify the proof of the
modal mu-calculus alternation hierarchy. We further show that the
alternation hierarchy on the binary tree is strict, resolving a
problem of Niwiński.
Drawing on an analogy with temporal fixpoint logic, we relate the arithmetic fixpoint definable sets to the winning positions of certain games, namely games whose winning conditions lie in the difference hierarchy over . This both provides a simple characterization of the fixpoint hierarchy, and refines existing results on the power of the game quantifier in descriptive set theory. We raise the problem of transfinite fixpoint hierarchies.
Drawing on an analogy with temporal fixpoint logic, we relate the
arithmetic fixpoint definable sets to the winning positions of certain
games, namely games whose winning conditions lie in the difference
hierarchy over . This both provides a simple characterization
of the fixpoint hierarchy, and refines existing results on the power of
the game quantifier in descriptive set theory. We raise the problem of
transfinite fixpoint hierarchies.
Given a free ultrafilter p on ℕ we say that x ∈ [0, 1] is the p-limit point of a sequence (x n)n∈ℕ ⊂ [0, 1] (in symbols, x = p -limn∈ℕ x n) if for every neighbourhood V of x, {n ∈ ℕ: x n ∈ V} ∈ p. For a function f: [0, 1] → [0, 1] the function f p: [0, 1] → [0, 1] is defined by f p(x) = p -limn∈ℕ f n(x) for each x ∈ [0, 1]. This map is rarely continuous. In this note we study properties which are equivalent to the continuity of f p. For a filter F we also define the ω F-limit set of f at x. We consider...
The notion of n-fold grisly deductive systems is introduced. Some conditions for a deductive system to be an n-fold grisly deductive system are provided. Extension property for n-fold grisly deductive system is established.
This paper deals with some properties of n-fold commutative ideals and n-fold weak commutative ideals in BCK-algebras. Afterwards, we construct some algorithms for studying foldness theory of commutative ideals in BCK-algebras.
Mathematics Subject Classification: 26A33; 93C15, 93C55, 93B36, 93B35,
93B51; 03B42; 70Q05; 49N05This paper proposes a novel method to design an H∞ -optimal fractional order PID (FOPID) controller with ability to control the transient,
steady-state response and stability margins characteristics. The method uses particle swarm optimization algorithm and operates based on minimizing a general cost function. Minimization of the cost function is carried out
subject to the H∞ -norm; this norm is also...
We show that all finite powers of a Hausdorff space do not contain uncountable weakly separated subspaces iff there is a c.c.c poset such that in is a countable union of -dimensional subspaces of countable weight. We also show that this...
The present paper addresses the problem of attainment of the supremums in various equivalent definitions of the hereditary density hd and hereditary Lindelöf degree hL of Boolean algebras. We partially answer two problems of J. Donald Monk [13, Problems 50, 54], showing consistency of different attainment behaviour and proving that (for the variants considered) this is the best result we can expect.
The technique of forcing is developed for the alternative set theory (AST) and similar weak theories, where it can be used to prove some new independence results. There are also introduced some new extensions of AST.
By the technique of forcing, some new independence results are proved for the alternative set theory (AST) and similar weak theories: The scheme of choice is independent both of AST and of second order arithmetic, axiom of constructibility is independent of AST plus schemes of choice.
We prove two theorems that characterize tightness in certain products of fans in terms of families of integer-valued functions. We also define several notions of forcing that allow us to manipulate the structure of the set of functions from some cardinal θ to ω, and hence, the tightness of these products. These results give new constructions of first countable <θ-cwH spaces that are not ≤θ-cwH.
Currently displaying 61 –
80 of
172