Comments on Ultraproducts of Forcing Systems
This paper describes UIO, a multi–domain question–answering system for the Czech language that looks for answers on the web. UIO exploits two fields, namely natural language interface to databases and question answering. In its current version, UIO can be used for asking questions about train and coach timetables, cinema and theatre performances, about currency exchange rates, name–days and on the Diderot Encyclopaedia. Much effort have been made into making addition of a new domain very easy. No...
The concept of a commutative directoid was introduced by J. Ježek and R. Quackenbush in 1990. We complete this algebra with involutions in its sections and show that it can be converted into a certain implication algebra. Asking several additional conditions, we show whether this directoid is sectionally complemented or whether the section is an NMV-algebra.
We study commutative directoids with a greatest element, which can be equipped with antitone bijections in every principal filter. These can be axiomatized as algebras with two binary operations satisfying four identities. A minimal subvariety of this variety is described.
In this article we prove that fundamental groups based at the unit point of topological groups are commutative [11].
Among other results we prove that the topological statement “Any compact covering mapping between two Π⁰₃ spaces is inductively perfect” is equivalent to the set-theoretical statement ""; and that the statement “Any compact covering mapping between two coanalytic spaces is inductively perfect” is equivalent to “Analytic Determinacy”. We also prove that these statements are connected to some regularity properties of coanalytic cofinal sets in (X), the hyperspace of all compact subsets of a Borel...
We consider the cardinal sequences of compact scattered spaces in models where CH is false. We describe a number of models of in which no such space can have ℵ₂ countable levels.
It is well-known that compacta (i.e. compact Hausdorff spaces) are maximally resolvable, that is every compactum contains many pairwise disjoint dense subsets, where denotes the minimum size of a non-empty open set in . The aim of this note is to prove the following analogous result: Every compactum contains many pairwise disjoint -dense subsets, where denotes the minimum size of a non-empty set in .
We study homeomorphism groups of metrizable compactifications of ℕ. All of those groups can be represented as almost zero-dimensional Polishable subgroups of the group . As a corollary, we show that all Polish groups are continuous homomorphic images of almost zero-dimensional Polishable subgroups of . We prove a sufficient condition for these groups to be one-dimensional and also study their descriptive complexity. In the last section we associate with every Polishable ideal on ℕ a certain Polishable...
The abstract model-theoretic concepts of compactness and Löwenheim-Skolem properties are investigated in the "softer" framework of pre-institutions [18]. Two compactness results are presented in this paper: a more informative reformulation of the compactness theorem for pre-institution transformations, and a theorem on natural equivalences with an abstract form of the first-order pre-institution. These results rely on notions of compact transformation, which are introduced as arrow-oriented generalizations...