Direct decomposability of tolerances and congruences on semigroups
The notion of bounded commutative residuated -monoid (-monoid, in short) generalizes both the notions of -algebra and of -algebra. Let be a -monoid; we denote by the underlying lattice of . In the present paper we show that each direct...
It is well-known that every MV-algebra is a distributive lattice with respect to the induced order. Replacing this lattice by the so-called directoid (introduced by J. Ježek and R. Quackenbush) we obtain a weaker structure, the so-called skew MV-algebra. The paper is devoted to the axiomatization of skew MV-algebras, their properties and a description of the induced implication algebras.
It is shown that every directoid equipped with sectionally switching mappings can be represented as a certain implication algebra. Moreover, if the directoid is also commutative, the corresponding implication algebra is defined by four simple identities.
We show that it is consistent with ZF that there is a dense-in-itself compact metric space which has the countable chain condition (ccc), but is neither separable nor second countable. It is also shown that has an open dense subspace which is not paracompact and that in ZF the Principle of Dependent Choice, DC, does not imply the disjoint union of metrizable spaces is normal.
The theory of discriminator algebras and varieties has been investigated extensively, and provides us with a wealth of information and techniques applicable to specific examples of such algebras and varieties. Here we give several such examples for Boolean algebras with a residuated binary operator, abbreviated as r-algebras. More specifically, we show that all finite r-algebras, all integral r-algebras, all unital r-algebras with finitely many elements below the unit, and all commutative residuated...
The paper deals with binary operations in the unit interval. We investigate connections between families of triangular norms, triangular conorms, uninorms and some decreasing functions. It is well known, that every uninorm is build by using some triangular norm and some triangular conorm. If we assume, that uninorm fulfils additional assumptions, then this triangular norm and this triangular conorm have to be ordinal sums. The intervals in ordinal sum are depending on the set of values of a decreasing...
The cooperative games with fuzzy coalitions in which some players act in a coalition only with a fraction of their total “power” (endeavor, investments, material, etc.) or in which they can distribute their “power” in more coalitions, are connected with some formal or interpretational problems. Some of these problems can be avoided if we interpret each fuzzy coalition as a fuzzy class of crisp coalitions, as shown by Mareš and Vlach in [9,10,11]. The relation between this model of fuzziness and...
On a Hausdorff inverse Lindelöf non Lindelöf topology has been constructed.