The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A 1984 problem of S. Z. Ditor asks whether there exists a lattice of cardinality ℵ₂, with zero, in which every principal ideal is finite and every element has at most three lower covers. We prove that the existence of such a lattice follows from either one of two axioms that are known to be independent of ZFC, namely (1) Martin’s Axiom restricted to collections of ℵ₁ dense subsets in posets of precaliber ℵ₁, (2) the existence of a gap-1 morass. In particular, the existence of such a lattice is consistent...
Assuming the continuum hypothesis there is an inseparable sequence of length ω₁ that contains no Lusin subsequence, while if Martin's Axiom and ¬ CH are assumed then every inseparable sequence (of length ω₁) is a union of countably many Lusin subsequences.
Under every uncountable almost disjoint family is either anti-Luzin or has an uncountable Luzin subfamily. This fails under CH. Related properties are also investigated.
Currently displaying 1 –
6 of
6