The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that if a Δ¹₁ function f with Σ¹₁ domain X is σ-continuous then one can find a Δ¹₁ covering of X such that is continuous for all n. This is an effective version of a recent result by Pawlikowski and Sabok, generalizing an earlier result of Solecki.
Let T be a locally finite rooted tree and B(T) be the boundary space of T. We study locally compact subgroups of the group TH(B(T)) = ⟨Iso(T),V⟩ generated by the group Iso(T) of all isometries of B(T) and the group V of Richard Thompson. We describe orbit equivalence relations arising from actions of these groups on B(T).
We show that some classes of small sets are topological versions of some combinatorial properties. We also give a characterization of spaces for which White has a winning strategy in the point-open game. We show that every Lusin set is undetermined, which solves a problem of Galvin.
We give several examples of Souslin forcing notions. For instance, we show that there exists a proper analytical forcing notion without ccc and with no perfect set of incompatible elements, we give an example of a Souslin ccc partial order without the Knaster property, and an example of a totally nonhomogeneous Souslin forcing notion.
Christensen has defined a generalization of the property of being of Haar measure zero to subsets of (abelian) Polish groups which need not be locally compact; a recent paper of Hunt, Sauer, and Yorke defines the same property for Borel subsets of linear spaces, and gives a number of examples and applications. The latter authors use the term “shyness” for this property, and “prevalence” for the complementary property. In the present paper, we construct a number of examples of non-shy Borel sets...
A classical theorem of Kuratowski says that every Baire one function on a subspace of a Polish (= separable completely metrizable) space X can be extended to a Baire one function on X. Kechris and Louveau introduced a finer gradation of Baire one functions into small Baire classes. A Baire one function f is assigned into a class in this hierarchy depending on its oscillation index β(f). We prove a refinement of Kuratowski’s theorem: if Y is a subspace of a metric space X and f is a real-valued...
Currently displaying 1 –
12 of
12