The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 161 – 180 of 183

Showing per page

Una classe di soluzioni con zeri dell'equazione funzionale di Aleksandrov.

Constanza Borelli Forti (1992)

Stochastica

In this paper we consider the Aleksandrov equation f(L + x) = f(L) + f(x) where L is contained in Rn and f: L --> R and we describe the class of solutions bounded from below, with zeros and assuming on the boundary of the set of zeros only values multiple of a fixed a > 0. This class is the natural generalization of that described by Aleksandrov itself in the one-dimensional case.

Universality of the μ-predictor

Christopher S. Hardin (2013)

Fundamenta Mathematicae

For suitable topological spaces X and Y, given a continuous function f:X → Y and a point x ∈ X, one can determine the value of f(x) from the values of f on a deleted neighborhood of x by taking the limit of f. If f is not required to be continuous, it is impossible to determine f(x) from this information (provided |Y| ≥ 2), but as the author and Alan Taylor showed in 2009, there is nevertheless a means of guessing f(x), called the μ-predictor, that will be correct except on a small set; specifically,...

Δ₁-Definability of the non-stationary ideal at successor cardinals

Sy-David Friedman, Liuzhen Wu, Lyubomyr Zdomskyy (2015)

Fundamenta Mathematicae

Assuming V = L, for every successor cardinal κ we construct a GCH and cardinal preserving forcing poset ℙ ∈ L such that in L the ideal of all non-stationary subsets of κ is Δ₁-definable over H(κ⁺).

Σ -Hamiltonian and Σ -regular algebraic structures

Ivan Chajda, Petr Emanovský (1996)

Mathematica Bohemica

The concept of a -closed subset was introduced in [1] for an algebraic structure = ( A , F , R ) of type and a set of open formulas of the first order language L ( ) . The set C ( ) of all -closed subsets of forms a complete lattice whose properties were investigated in [1] and [2]. An algebraic structure is called - hamiltonian, if every non-empty -closed subset of is a class (block) of some congruence on ; is called - regular, if = 𝔽 for every two , 𝔽 whenever they have a congruence class B C ( ) in common....

Currently displaying 161 – 180 of 183