The search session has expired. Please query the service again.
Assuming V = L, for every successor cardinal κ we construct a GCH and cardinal preserving forcing poset ℙ ∈ L such that in the ideal of all non-stationary subsets of κ is Δ₁-definable over H(κ⁺).
The concept of a -closed subset was introduced in [1] for an algebraic structure of type and a set of open formulas of the first order language . The set of all -closed subsets of forms a complete lattice whose properties were investigated in [1] and [2]. An algebraic structure is called - hamiltonian, if every non-empty -closed subset of is a class (block) of some congruence on ; is called - regular, if for every two , whenever they have a congruence class in common....
Currently displaying 1 –
12 of
12