The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Uno de los problemas abiertos más antiguos de la teoría de grupos categórica es si todo par ortogonal (formado por una clase de grupos y una clase de homomorfismos que se determinan mutuamente por ortogonalidad en el sentido de Freyd-Kelly), se halla asociado a un funtor de localización. Se sabe que esto es cierto si se acepta la validez de un cierto axioma de cardinales grandes (el principio de Vopenka), pero no se conoce ninguna demostración mediante los axiomas ordinarios (ZFC) de la teoría de...
If κ is either supercompact or strong and δ < κ is α strong or α supercompact for every α < κ, then it is known δ must be (fully) strong or supercompact. We show this is not necessarily the case if κ is strongly compact.
Motivated by the paper by H. Herrlich, E. Tachtsis (2017) we investigate in ZFC the following compactness question: for which uncountable cardinals , an arbitrary nonempty system of homogeneous -linear equations is nontrivially solvable in provided that each of its subsystems of cardinality less than is nontrivially solvable in ?
If there is no inner model with measurable cardinals, then for each cardinal there is an almost disjoint family of countable subsets of such that every subset of with order type contains an element of .
We prove that the Fodor-type Reflection Principle (FRP) is equivalent to the assertion that any Boolean algebra is openly generated if and only if it is ℵ₂-projective. Previously it was known that this characterization of openly generated Boolean algebras follows from Axiom R. Since FRP is preserved by c.c.c. generic extension, we conclude in particular that this characterization is consistent with any set-theoretic assertion forcable by a c.c.c. poset starting from a model of FRP. A crucial step...
Currently displaying 21 –
29 of
29