The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 6 of 6

Showing per page

Capturing forms in dense subsets of finite fields

Brandon Hanson (2013)

Acta Arithmetica

An open problem of arithmetic Ramsey theory asks if given an r-colouring c:ℕ → 1,...,r of the natural numbers, there exist x,y ∈ ℕ such that c(xy) = c(x+y) apart from the trivial solution x = y = 2. More generally, one could replace x+y with a binary linear form and xy with a binary quadratic form. In this paper we examine the analogous problem in a finite field q . Specifically, given a linear form L and a quadratic form Q in two variables, we provide estimates on the necessary size of A q to guarantee...

Combinatorics of open covers (VII): Groupability

Ljubiša D. R. Kočinac, Marion Scheepers (2003)

Fundamenta Mathematicae

We use Ramseyan partition relations to characterize: ∙ the classical covering property of Hurewicz; ∙ the covering property of Gerlits and Nagy; ∙ the combinatorial cardinal numbers and add(ℳ ). Let X be a T 31 / 2 -space. In [9] we showed that C p ( X ) has countable strong fan tightness as well as the Reznichenko property if, and only if, all finite powers of X have the Gerlits-Nagy covering property. Now we show that the following are equivalent: 1. C p ( X ) has countable fan tightness and the Reznichenko property. 2....

Currently displaying 1 – 6 of 6

Page 1