About a generalization of transversals
The aim of this paper is to generalize several basic results from transversal theory, primarily the theorem of Edmonds and Fulkerson.
The aim of this paper is to generalize several basic results from transversal theory, primarily the theorem of Edmonds and Fulkerson.
Let k be a positive integer and let G = (V,E) be a simple graph. The k-tuple domination number of G is the minimum cardinality of a k-tuple dominating set S, a set that for every vertex v ∈ V, . Also the total k-domination number of G is the minimum cardinality of a total k -dominating set S, a set that for every vertex v ∈ V, . The k-transversal number τₖ(H) of a hypergraph H is the minimum size of a subset S ⊆ V(H) such that |S ∩e | ≥ k for every edge e ∈ E(H). We know that for any graph...
The aim of this paper is to prove that a quasigroup with right unit is isomorphic to an -extension of a right nuclear normal subgroup by the factor quasigroup if and only if there exists a normalized left transversal to in such that the right translations by elements of commute with all right translations by elements of the subgroup . Moreover, a loop is isomorphic to an -extension of a right nuclear normal subgroup by a loop if and only if is middle-nuclear, and there exists...
The theorem of Edmonds and Fulkerson states that the partial transversals of a finite family of sets form a matroid. The aim of this paper is to present a symmetrized and continuous generalization of this theorem.