The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 6 of 6

Showing per page

Diamond identities for relative congruences

Gábor Czédli (1995)

Archivum Mathematicum

For a class K of structures and A K let C o n * ( A ) resp. C o n K ( A ) denote the lattices of * -congruences resp. K -congruences of A , cf. Weaver [25]. Let C o n * ( K ) : = I { C o n * ( A ) : A K } where I is the operator of forming isomorphic copies, and C o n r ( K ) : = I { C o n K ( A ) : A K } . For an ordered algebra A the lattice of order congruences of A is denoted by C o n < ( A ) , and let C o n < ( K ) : = I { C o n < ( A ) : A K } if K is a class of ordered algebras. The operators of forming subdirect squares and direct products are denoted by Q s and P , respectively. Let λ be a lattice identity and let Σ be a set of lattice identities. Let Σ c λ ( r ; Q s , P ) denote...

Distributivity of lattices of binary relations

Ivan Chajda (2002)

Mathematica Bohemica

We present a formal scheme which whenever satisfied by relations of a given relational lattice L containing only reflexive and transitive relations ensures distributivity of L .

Currently displaying 1 – 6 of 6

Page 1