Page 1 Next
Displaying 1 – 20 of 25
-pencils.
McDonald, Judith J., Olesky, D.Dale, Schneider, Hans, Tsatsomeros, Michael J., van den Driessche, P. (1998)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Základy teorie matic [Book]
Borůvka, Otakar (1971)
Zaměnitelnost endomorfismů lineárních prostorů
Miroslav Novotný (1982)
Časopis pro pěstování matematiky
Zero minors of total positive matrices.
Pinkus, Allan (2008)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Zero-nonzero patterns for nilpotent matrices over finite fields.
Vander Meulen, Kevin N., Van Tuyl, Adam (2009)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Zero-one completely positive matrices and the A(R, S) classes
G. Dahl, T. A. Haufmann (2016)
Special Matrices
A matrix of the form A = BBT where B is nonnegative is called completely positive (CP). Berman and Xu (2005) investigated a subclass of CP-matrices, called f0, 1g-completely positive matrices. We introduce a related concept and show connections between the two notions. An important relation to the so-called cut cone is established. Some results are shown for f0, 1g-completely positive matrices with given graphs, and for {0,1}-completely positive matrices constructed from the classes of (0, 1)-matrices...
Zero-one matrices with an application to abelian groups
Ulrich F. Albrecht, H. Pat Goeters, Charles Megibben (1993)
Rendiconti del Seminario Matematico della Università di Padova
Zeros and local extreme points of Faber polynomials associated with hypocycloidal domains.
Eiermann, Michael, Varga, Richard S. (1993)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
Zeros of unilateral quaternionic polynomials.
De Leo, Stefano, Ducati, Gisele, Leonardi, Vinicius (2006)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Zero-term rank preservers of integer matrices
Seok-Zun Song, Young-Bae Jun (2006)
Discussiones Mathematicae - General Algebra and Applications
The zero-term rank of a matrix is the minimum number of lines (row or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve the zero-term rank of the m × n integer matrices. That is, a linear operator T preserves the zero-term rank if and only if it has the form T(A)=P(A ∘ B)Q, where P, Q are permutation matrices and A ∘ B is the Schur product with B whose entries are all nonzero integers.
Zero-term ranks of real matrices and their preservers
LeRoy B. Beasley, Young Bae Jun, Seok-Zun Song (2004)
Czechoslovak Mathematical Journal
Zero-term rank of a matrix is the minimum number of lines (rows or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve zero-term rank of the real matrices. We also obtain combinatorial equivalent condition for the zero-term rank of a real matrix.
Zur besten normalen Approximation komplexer Matrizen in der Euklidischen Norm.
Richard Gabriel (1988/1989)
Mathematische Zeitschrift
Zur Charakterisierung des Skalarprduktes.
Jürgen Rätz (1981)
Elemente der Mathematik
Zur Inversmonotonie diskreter Probleme.
J. Lorenz (1976/1977)
Numerische Mathematik
Zur Klassifikation von Bilinearformen und von Isometrie über Körpern.
Rudolf Scharlau (1981)
Mathematische Zeitschrift
Zur Linearität verallgemeinerter Modulisometrien
JÜRG RATZ (1971)
Aequationes mathematicae
Zur Linearität verallgemeinerter Modulisometrien (Short Communication)
JÜRG RÄTZ (1971)
Aequationes mathematicae
Zur orthogonalen Geometrie über pythagoreischen Körpern.
Ludwig Bröcker (1974)
Journal für die reine und angewandte Mathematik
Zur Theorie der Determinanten.
J.J. Weyrauch (1872)
Journal für die reine und angewandte Mathematik
Currently displaying 1 – 20 of 25
Page 1 Next