The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 133

Showing per page

Maps on matrices that preserve the spectral radius distance

Rajendra Bhatia, Peter Šemrl, A. Sourour (1999)

Studia Mathematica

Let ϕ be a surjective map on the space of n×n complex matrices such that r(ϕ(A)-ϕ(B))=r(A-B) for all A,B, where r(X) is the spectral radius of X. We show that ϕ must be a composition of five types of maps: translation, multiplication by a scalar of modulus one, complex conjugation, taking transpose and (simultaneous) similarity. In particular, ϕ is real linear up to a translation.

Maps on upper triangular matrices preserving zero products

Roksana Słowik (2017)

Czechoslovak Mathematical Journal

Consider 𝒯 n ( F ) —the ring of all n × n upper triangular matrices defined over some field F . A map φ is called a zero product preserver on 𝒯 n ( F ) in both directions if for all x , y 𝒯 n ( F ) the condition x y = 0 is satisfied if and only if φ ( x ) φ ( y ) = 0 . In the present paper such maps are investigated. The full description of bijective zero product preservers is given. Namely, on the set of the matrices that are invertible, the map φ may act in any bijective way, whereas for the zero divisors and zero matrix one can write φ as a composition...

Currently displaying 1 – 20 of 133

Page 1 Next