The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let H be a Krull monoid with infinite class group and such that each divisor class of H contains a prime divisor. We show that for each finite set L of integers ≥2 there exists some h ∈ H such that the following are equivalent: (i) h has a representation for some irreducible elements , (ii) k ∈ L.
For a non-unit a of an atomic monoid H we call
the set of lengths of a. Let H be a Krull monoid with infinite divisor class group such that each divisor class is the sum of a bounded number of prime divisor classes of H. We investigate factorization properties of H and show that H has sets of lengths containing large gaps. Finally we apply this result to finitely generated algebras over perfect fields with infinite divisor class group.
Currently displaying 1 –
10 of
10