The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 981 –
1000 of
4583
We introduce an ap-Henstock-Kurzweil type integral with a non-atomic Radon measure and prove the Saks-Henstock type lemma. The monotone convergence theorem, -Henstock-Kurzweil equi-integrability, and uniformly strong Lusin condition are discussed.
We establish a connection between the L² norm of sums of dilated functions whose jth Fourier coefficients are for some α ∈ (1/2,1), and the spectral norms of certain greatest common divisor (GCD) matrices. Utilizing recent bounds for these spectral norms, we obtain sharp conditions for the convergence in L² and for the almost everywhere convergence of series of dilated functions.
We prove that if for certain values of , then
It is shown that a uniform version of Sklyarenko's integrability condition for Perron integrals together with pointwise convergence of a sequence of integrable functions are sufficient for a convergence theorem for Perron integrals.
We give a definition of uniform PU-integrability for a sequence of -measurable real functions defined on an abstract metric space and prove that it is not equivalent to the uniform -integrability.
The purpose of this note is to provide characterizations of operator convexity and give an alternative proof of a two-dimensional analogue of a theorem of Löwner concerning operator monotonicity.
Currently displaying 981 –
1000 of
4583