Page 1 Next

Displaying 1 – 20 of 4472

Showing per page

1-Lipschitz aggregation operators and quasi-copulas

Anna Kolesárová (2003)


In the paper, binary 1-Lipschitz aggregation operators and specially quasi-copulas are studied. The characterization of 1-Lipschitz aggregation operators as solutions to a functional equation similar to the Frank functional equation is recalled, and moreover, the importance of quasi-copulas and dual quasi-copulas for describing the structure of 1-Lipschitz aggregation operators with neutral element or annihilator is shown. Also a characterization of quasi-copulas as solutions to a certain functional...

A Brief Story about the Operators of the Generalized Fractional Calculus

Kiryakova, Virginia (2008)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 26A33, 33C60, 44A20In this survey we present a brief history and the basic ideas of the generalized fractional calculus (GFC). The notion “generalized operator of fractional integration” appeared in the papers of the jubilarian Prof. S.L. Kalla in the years 1969-1979 when he suggested the general form of these operators and studied examples of them whose kernels were special functions as the Gauss and generalized hypergeometric functions, including arbitrary...

A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces.

Petteri Harjulehto, Peter Hästö (2004)

Revista Matemática Complutense

We study the Poincaré inequality in Sobolev spaces with variable exponent. Under a rather mild and sharp condition on the exponent p we show that the inequality holds. This condition is satisfied e.g. if the exponent p is continuous in the closure of a convex domain. We also give an essentially sharp condition for the exponent p as to when there exists an imbedding from the Sobolev space to the space of bounded functions.

A Carlson type inequality with blocks and interpolation

Natan Kruglyak, Lech Maligranda, Lars Persson (1993)

Studia Mathematica

An inequality, which generalizes and unifies some recently proved Carlson type inequalities, is proved. The inequality contains a certain number of “blocks” and it is shown that these blocks are, in a sense, optimal and cannot be removed or essentially changed. The proof is based on a special equivalent representation of a concave function (see [6, pp. 320-325]). Our Carlson type inequality is used to characterize Peetre’s interpolation functor φ (see [26]) and its Gagliardo closure on couples of...

A chain rule formula for the composition of a vector-valued function by a piecewise smooth function

François Murat, Cristina Trombetti (2003)

Bollettino dell'Unione Matematica Italiana

We state and prove a chain rule formula for the composition T u of a vector-valued function u W 1 , r Ω ; R M by a globally Lipschitz-continuous, piecewise C 1 function T . We also prove that the map u T u is continuous from W 1 , r Ω ; R M into W 1 , r Ω for the strong topologies of these spaces.

Currently displaying 1 – 20 of 4472

Page 1 Next