Displaying 121 – 140 of 880

Showing per page

On a subclass of the family of Darboux functions

Zbigniew Grande (2009)

Colloquium Mathematicae

We investigate functions f: I → ℝ (where I is an open interval) such that for all u,v ∈ I with u < v and f(u) ≠ f(v) and each c ∈ (min(f(u),f(v)),max(f(u),f(v))) there is a point w ∈ (u,v) such that f(w) = c and f is approximately continuous at w.

On a variant of the Hardy inequality between weighted Orlicz spaces

Agnieszka Kałamajska, Katarzyna Pietruska-Pałuba (2009)

Studia Mathematica

Let M be an N-function satisfying the Δ₂-condition, and let ω, φ be two other functions, with ω ≥ 0. We study Hardy-type inequalities M ( ω ( x ) | u ( x ) | ) e x p ( - φ ( x ) ) d x C M ( | u ' ( x ) | ) e x p ( - φ ( x ) ) d x , where u belongs to some set of locally absolutely continuous functions containing C ( ) . We give sufficient conditions on the triple (ω,φ,M) for such inequalities to be valid for all u from a given set . The set may be smaller than the set of Hardy transforms. Bounds for constants are also given, yielding classical Hardy inequalities with best constants.

On affinity of Peano type functions

Tomasz Słonka (2012)

Colloquium Mathematicae

We show that if n is a positive integer and 2 , then for every positive integer m and for every real constant c > 0 there are functions f , . . . , f n + m : such that ( f , . . . , f n + m ) ( ) = n + m and for every x ∈ ℝⁿ there exists a strictly increasing sequence (i₁,...,iₙ) of numbers from 1,...,n+m and a w ∈ ℤⁿ such that ( f i , . . . , f i ) ( y ) = y + w for y x + ( - c , c ) × n - 1 .

Currently displaying 121 – 140 of 880