The search session has expired. Please query the service again.
Let F be a polynomial mapping of ℝ², F(O) = 0. In 1987 Meisters and Olech proved that the solution y(·) = 0 of the autonomous system of differential equations ẏ = F(y) is globally asymptotically stable provided that the jacobian of F is everywhere positive and the trace of the matrix of the differential of F is everywhere negative. In particular, the mapping F is then injective. We give an n-dimensional generalization of this result.
∗ Research partially supported by INTAS grant 97-1644A real polynomial of one real variable is hyperbolic (resp.
strictly hyperbolic) if it has only real roots (resp. if its roots are real and
distinct). We prove that there are 116 possible non-degenerate configurations
between the roots of a degree 5 strictly hyperbolic polynomial and
of its derivatives (i.e. configurations without equalities between roots).
The standard Rolle theorem allows 286 such configurations. To obtain
the result we study...
Currently displaying 1 –
4 of
4