The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For any 1-1 measure preserving map T of a probability space we can form the [T,Id] and automorphisms as well as the corresponding endomorphisms and decreasing sequence of σ-algebras. In this paper we show that if T has zero entropy and the [T,Id] automorphism is isomorphic to a Bernoulli shift then the decreasing sequence of σ-algebras generated by the [T,Id] endomorphism is standard. We also show that if T has zero entropy and the [T²,Id] automorphism is isomorphic to a Bernoulli shift then the...
We prove that Poisson measures are invariant under (random) intensity preserving transformations whose finite difference gradient satisfies a cyclic vanishing condition. The proof relies on moment identities of independent interest for adapted and anticipating Poisson stochastic integrals, and is inspired by the method of Üstünel and Zakai (Probab. Theory Related Fields103 (1995) 409–429) on the Wiener space, although the corresponding algebra is more complex than in the Wiener case. The examples...
We consider the set of expanding maps of the circle which have a unique absolutely continuous invariant probability measure whose density is unbounded, and show that this set is dense in the space of expanding maps with the topology. This is in contrast with results for or maps, where the invariant densities can be shown to be continuous.
Let be a non-integer. We consider expansions of the form , where the
digits are generated by means of a Borel map defined on . We show existence and uniqueness of a -invariant probability measure, absolutely continuous with respect to , where is the Bernoulli measure on with parameter () and is the normalized Lebesgue measure on . Furthermore, this measure is of the form , where is equivalent to . We prove that the measure of maximal entropy and are mutually singular. In...
We consider piecewise monotonic and expanding transformations τ of a real interval (not necessarily bounded) into itself with countable number of points of discontinuity of τ’ and with some conditions on the variation which need not be a bounded function (although it is bounded on any compact interval). We prove that such transformations have absolutely continuous invariant measures. This result generalizes all previous “bounded variation” existence theorems.
For any m, 2 ≤ m < ∞, we construct an ergodic dynamical system having spectral multiplicity m and infinite rank. Given r > 1, 0 < b < 1 such that rb > 1 we construct a dynamical system (X, B, μ, T) with simple spectrum such that r(T) = r, F*(T) = b, and
Currently displaying 1 –
20 of
26