Invariance of Poisson measures under random transformations

Nicolas Privault

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 4, page 947-972
  • ISSN: 0246-0203

Abstract

top
We prove that Poisson measures are invariant under (random) intensity preserving transformations whose finite difference gradient satisfies a cyclic vanishing condition. The proof relies on moment identities of independent interest for adapted and anticipating Poisson stochastic integrals, and is inspired by the method of Üstünel and Zakai (Probab. Theory Related Fields103 (1995) 409–429) on the Wiener space, although the corresponding algebra is more complex than in the Wiener case. The examples of application include transformations conditioned by random sets such as the convex hull of a Poisson random measure.

How to cite

top

Privault, Nicolas. "Invariance of Poisson measures under random transformations." Annales de l'I.H.P. Probabilités et statistiques 48.4 (2012): 947-972. <http://eudml.org/doc/272011>.

@article{Privault2012,
abstract = {We prove that Poisson measures are invariant under (random) intensity preserving transformations whose finite difference gradient satisfies a cyclic vanishing condition. The proof relies on moment identities of independent interest for adapted and anticipating Poisson stochastic integrals, and is inspired by the method of Üstünel and Zakai (Probab. Theory Related Fields103 (1995) 409–429) on the Wiener space, although the corresponding algebra is more complex than in the Wiener case. The examples of application include transformations conditioned by random sets such as the convex hull of a Poisson random measure.},
author = {Privault, Nicolas},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Poisson measures; random transformations; invariance; Skorohod integral; moment identities; Poisson measure; random transformation},
language = {eng},
number = {4},
pages = {947-972},
publisher = {Gauthier-Villars},
title = {Invariance of Poisson measures under random transformations},
url = {http://eudml.org/doc/272011},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Privault, Nicolas
TI - Invariance of Poisson measures under random transformations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 4
SP - 947
EP - 972
AB - We prove that Poisson measures are invariant under (random) intensity preserving transformations whose finite difference gradient satisfies a cyclic vanishing condition. The proof relies on moment identities of independent interest for adapted and anticipating Poisson stochastic integrals, and is inspired by the method of Üstünel and Zakai (Probab. Theory Related Fields103 (1995) 409–429) on the Wiener space, although the corresponding algebra is more complex than in the Wiener case. The examples of application include transformations conditioned by random sets such as the convex hull of a Poisson random measure.
LA - eng
KW - Poisson measures; random transformations; invariance; Skorohod integral; moment identities; Poisson measure; random transformation
UR - http://eudml.org/doc/272011
ER -

References

top
  1. [1] S. Albeverio and N. V. Smorodina. A distributional approach to multiple stochastic integrals and transformations of the Poisson measure. Acta Appl. Math.94 (2006) 1–19. Zbl1107.28010MR2271674
  2. [2] K. Bichteler. Stochastic Integration with Jumps. Encyclopedia of Mathematics and Its Applications 89. Cambridge Univ. Press, Cambridge, 2002. Zbl1002.60001MR1906715
  3. [3] P. Brandimarte. Numerical Methods in Finance and Economics, second edition. Statistics in Practice. Wiley-Interscience, Hoboken, NJ, 2006. Zbl1129.91002MR2255817
  4. [4] P. Brémaud. Point Processes and Queues, Martingale Dynamics. Springer, New York, 1981. Zbl0478.60004MR636252
  5. [5] T. Carleman. Les fonctions quasi analytiques. Gauthier-Villars, Éditeur, Paris, 1926. JFM52.0255.02
  6. [6] C. A. Charalambides. Enumerative combinatorics. CRC Press Series on Discrete Mathematics and Its Applications. Chapman & Hall/CRC, Boca Raton, FL, 2002. Zbl1001.05001
  7. [7] Y. Davydov and S. Nagaev. On the convex hulls of point processes. Manuscript, 2000. 
  8. [8] A. Dermoune, P. Krée and L. Wu. Calcul stochastique non adapté par rapport à la mesure de Poisson. In Séminaire de Probabilités XXII 477–484. Lecture Notes in Math. 1321. Springer, Berlin, 1988. Zbl0653.60045MR960543
  9. [9] G. Di Nunno, B. Øksendal and F. Proske. Malliavin Calculus for Lévy Processes with Applications to Finance. Springer, Berlin, 2009. Zbl1080.60068
  10. [10] Y. Ito. Generalized Poisson functionals. Probab. Theory Related Fields77 (1988) 1–28. Zbl0617.60035MR921816
  11. [11] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes, second edition. Grundlehren der Mathematischen Wissenschaften 288. Springer, Berlin, 2003. Zbl1018.60002MR1943877
  12. [12] J. Picard. Formules de dualité sur l’espace de Poisson. Ann. Inst. Henri Poincaré Probab. Stat.32 (1996) 509–548. Zbl0859.60045MR1411270
  13. [13] N. Privault. Girsanov theorem for anticipative shifts on Poisson space. Probab. Theory Related Fields104 (1996) 61–76. Zbl0838.60038MR1367667
  14. [14] N. Privault. Moment identities for Poisson–Skorohod integrals and application to measure invariance. C. R. Math. Acad. Sci. Paris347 (2009) 1071–1074. Zbl1179.60035MR2554579
  15. [15] N. Privault. Moment identities for Skorohod integrals on the Wiener space and applications. Electron. Commun. Probab. 14 (2009) 116–121 (electronic). Zbl1189.60113MR2481671
  16. [16] N. Privault. Stochastic Analysis in Discrete and Continuous Settings. Lecture Notes in Math. 1982. Springer, Berlin, 2009. Zbl1185.60005MR2531026
  17. [17] N. Privault. Generalized Bell polynomials and the combinatorics of Poisson central moments. Electron. J. Combin. 18 (2011) P54. Zbl1215.11017MR2776830
  18. [18] N. Privault and J. L. Wu. Poisson stochastic integration in Hilbert spaces. Ann. Math. Blaise Pascal6 (1999) 41–61. Zbl1158.60351MR1735278
  19. [19] J. A. Shohat and J. D. Tamarkin. The Problem of Moments. American Mathematical Society Mathematical Surveys II. Amer. Math. Soc., New York, 1943. Zbl0063.06973MR8438
  20. [20] Y. Takahashi. Absolute continuity of Poisson random fields. Publ. Res. Inst. Math. Sci.26 (1990) 629–647. Zbl0738.60040MR1081507
  21. [21] A. S. Üstünel and M. Zakai. Analyse de rotations aléatoires sur l’espace de Wiener. C. R. Acad. Sci. Paris Sér. I Math.319 (1994) 1069–1073. Zbl0810.60001MR1305678
  22. [22] A. S. Üstünel and M. Zakai. Random rotations of the Wiener path. Probab. Theory Related Fields103 (1995) 409–429. Zbl0832.60052MR1358084
  23. [23] A. S. Üstünel and M. Zakai. Transformation of Measure on Wiener Space. Springer Monogr. Math. Springer, Berlin, 2000. Zbl0974.46044MR1736980
  24. [24] A. M. Veršik, I. M. Gel’fand and M. I. Graev. Representations of the group of diffeomorphisms. Uspekhi Mat. Nauk30 (1975) 1–50. Zbl0337.58003
  25. [25] S. Zuyev. Stopping sets: Gamma-type results and hitting properties. Adv. in Appl. Probab.31 (1999) 355–366. Zbl0947.60053MR1724557

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.