Invariance of Poisson measures under random transformations
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 4, page 947-972
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topPrivault, Nicolas. "Invariance of Poisson measures under random transformations." Annales de l'I.H.P. Probabilités et statistiques 48.4 (2012): 947-972. <http://eudml.org/doc/272011>.
@article{Privault2012,
abstract = {We prove that Poisson measures are invariant under (random) intensity preserving transformations whose finite difference gradient satisfies a cyclic vanishing condition. The proof relies on moment identities of independent interest for adapted and anticipating Poisson stochastic integrals, and is inspired by the method of Üstünel and Zakai (Probab. Theory Related Fields103 (1995) 409–429) on the Wiener space, although the corresponding algebra is more complex than in the Wiener case. The examples of application include transformations conditioned by random sets such as the convex hull of a Poisson random measure.},
author = {Privault, Nicolas},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Poisson measures; random transformations; invariance; Skorohod integral; moment identities; Poisson measure; random transformation},
language = {eng},
number = {4},
pages = {947-972},
publisher = {Gauthier-Villars},
title = {Invariance of Poisson measures under random transformations},
url = {http://eudml.org/doc/272011},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Privault, Nicolas
TI - Invariance of Poisson measures under random transformations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 4
SP - 947
EP - 972
AB - We prove that Poisson measures are invariant under (random) intensity preserving transformations whose finite difference gradient satisfies a cyclic vanishing condition. The proof relies on moment identities of independent interest for adapted and anticipating Poisson stochastic integrals, and is inspired by the method of Üstünel and Zakai (Probab. Theory Related Fields103 (1995) 409–429) on the Wiener space, although the corresponding algebra is more complex than in the Wiener case. The examples of application include transformations conditioned by random sets such as the convex hull of a Poisson random measure.
LA - eng
KW - Poisson measures; random transformations; invariance; Skorohod integral; moment identities; Poisson measure; random transformation
UR - http://eudml.org/doc/272011
ER -
References
top- [1] S. Albeverio and N. V. Smorodina. A distributional approach to multiple stochastic integrals and transformations of the Poisson measure. Acta Appl. Math.94 (2006) 1–19. Zbl1107.28010MR2271674
- [2] K. Bichteler. Stochastic Integration with Jumps. Encyclopedia of Mathematics and Its Applications 89. Cambridge Univ. Press, Cambridge, 2002. Zbl1002.60001MR1906715
- [3] P. Brandimarte. Numerical Methods in Finance and Economics, second edition. Statistics in Practice. Wiley-Interscience, Hoboken, NJ, 2006. Zbl1129.91002MR2255817
- [4] P. Brémaud. Point Processes and Queues, Martingale Dynamics. Springer, New York, 1981. Zbl0478.60004MR636252
- [5] T. Carleman. Les fonctions quasi analytiques. Gauthier-Villars, Éditeur, Paris, 1926. JFM52.0255.02
- [6] C. A. Charalambides. Enumerative combinatorics. CRC Press Series on Discrete Mathematics and Its Applications. Chapman & Hall/CRC, Boca Raton, FL, 2002. Zbl1001.05001
- [7] Y. Davydov and S. Nagaev. On the convex hulls of point processes. Manuscript, 2000.
- [8] A. Dermoune, P. Krée and L. Wu. Calcul stochastique non adapté par rapport à la mesure de Poisson. In Séminaire de Probabilités XXII 477–484. Lecture Notes in Math. 1321. Springer, Berlin, 1988. Zbl0653.60045MR960543
- [9] G. Di Nunno, B. Øksendal and F. Proske. Malliavin Calculus for Lévy Processes with Applications to Finance. Springer, Berlin, 2009. Zbl1080.60068
- [10] Y. Ito. Generalized Poisson functionals. Probab. Theory Related Fields77 (1988) 1–28. Zbl0617.60035MR921816
- [11] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes, second edition. Grundlehren der Mathematischen Wissenschaften 288. Springer, Berlin, 2003. Zbl1018.60002MR1943877
- [12] J. Picard. Formules de dualité sur l’espace de Poisson. Ann. Inst. Henri Poincaré Probab. Stat.32 (1996) 509–548. Zbl0859.60045MR1411270
- [13] N. Privault. Girsanov theorem for anticipative shifts on Poisson space. Probab. Theory Related Fields104 (1996) 61–76. Zbl0838.60038MR1367667
- [14] N. Privault. Moment identities for Poisson–Skorohod integrals and application to measure invariance. C. R. Math. Acad. Sci. Paris347 (2009) 1071–1074. Zbl1179.60035MR2554579
- [15] N. Privault. Moment identities for Skorohod integrals on the Wiener space and applications. Electron. Commun. Probab. 14 (2009) 116–121 (electronic). Zbl1189.60113MR2481671
- [16] N. Privault. Stochastic Analysis in Discrete and Continuous Settings. Lecture Notes in Math. 1982. Springer, Berlin, 2009. Zbl1185.60005MR2531026
- [17] N. Privault. Generalized Bell polynomials and the combinatorics of Poisson central moments. Electron. J. Combin. 18 (2011) P54. Zbl1215.11017MR2776830
- [18] N. Privault and J. L. Wu. Poisson stochastic integration in Hilbert spaces. Ann. Math. Blaise Pascal6 (1999) 41–61. Zbl1158.60351MR1735278
- [19] J. A. Shohat and J. D. Tamarkin. The Problem of Moments. American Mathematical Society Mathematical Surveys II. Amer. Math. Soc., New York, 1943. Zbl0063.06973MR8438
- [20] Y. Takahashi. Absolute continuity of Poisson random fields. Publ. Res. Inst. Math. Sci.26 (1990) 629–647. Zbl0738.60040MR1081507
- [21] A. S. Üstünel and M. Zakai. Analyse de rotations aléatoires sur l’espace de Wiener. C. R. Acad. Sci. Paris Sér. I Math.319 (1994) 1069–1073. Zbl0810.60001MR1305678
- [22] A. S. Üstünel and M. Zakai. Random rotations of the Wiener path. Probab. Theory Related Fields103 (1995) 409–429. Zbl0832.60052MR1358084
- [23] A. S. Üstünel and M. Zakai. Transformation of Measure on Wiener Space. Springer Monogr. Math. Springer, Berlin, 2000. Zbl0974.46044MR1736980
- [24] A. M. Veršik, I. M. Gel’fand and M. I. Graev. Representations of the group of diffeomorphisms. Uspekhi Mat. Nauk30 (1975) 1–50. Zbl0337.58003
- [25] S. Zuyev. Stopping sets: Gamma-type results and hitting properties. Adv. in Appl. Probab.31 (1999) 355–366. Zbl0947.60053MR1724557
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.