The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 50

Showing per page

On an analytic approach to the Fatou conjecture

Genadi Levin (2002)

Fundamenta Mathematicae

Let f be a quadratic map (more generally, f ( z ) = z d + c , d > 1) of the complex plane. We give sufficient conditions for f to have no measurable invariant linefields on its Julia set. We also prove that if the series n 0 1 / ( f ) ' ( c ) converges absolutely, then its sum is non-zero. In the proof we use analytic tools, such as integral and transfer (Ruelle-type) operators and approximation theorems.

On fixed points of C 1 extensions of expanding maps in the unit disc

Roberto Tauraso (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Using a result due to M. Shub, a theorem about the existence of fixed points inside the unit disc for C 1 extensions of expanding maps defined on the boundary is established. An application to a special class of rational maps on the Riemann sphere and some considerations on ergodic properties of these maps are also made.

Currently displaying 1 – 20 of 50

Page 1 Next