The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 5 of 5

Showing per page

New cases of equality between p-module and p-capacity

Petru Caraman (1991)

Annales Polonici Mathematici

Let E₀, E₁ be two subsets of the closure D̅ of a domain D of the Euclidean n-space n and Γ(E₀,E₁,D) the family of arcs joining E₀ to E₁ in D. We establish new cases of equality M p Γ ( E , E , D ) = c a p p ( E , E , D ) , where M p Γ ( E , E , D ) is the p-module of the arc family Γ(E₀,E₁,D), while c a p p ( E , E , D ) is the p-capacity of E₀,E₁ relative to D and p > 1. One of these cases is when p = n, E̅₀ ∩ E̅₁ = ∅, E i = E i ' E i ' ' E i ' ' ' F i , E i ' is inaccessible from D by rectifiable arcs, E i ' ' is open relative to D̅ or to the boundary ∂D of D, E i ' ' ' is at most countable, F i is closed (i = 0,1) and D...

Norm inequalities for potential-type operators.

Sagun Chanillo, Jan-Olov Strömberg, Richard L. Wheeden (1987)

Revista Matemática Iberoamericana

The purpose of this paper is to derive norm inequalities for potentials of the formTf(x) = ∫(Rn) f(y)K(x,y)dy,     x ∈ Rn,when K is a Kernel which satisfies estimates like those that hold for the Green function associated with the degenerate elliptic equations studied in [3] and [4].

Currently displaying 1 – 5 of 5

Page 1