The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study conservative ergodic infinite measure preserving transformations satisfying a compact regeneration property introduced by the second-named author in J. Anal. Math. 103 (2007). Assuming regular variation of the wandering rate, we clarify the asymptotic distributional behaviour of the random vector (Zₙ,Sₙ), where Zₙ and Sₙ are respectively the time of the last visit before time n to, and the occupation time of, a suitable set Y of finite measure.
We give a sufficient condition for the construction of Markov fibred systems using countable Markov partitions with locally bounded distortion.
We introduce a property of ergodic flows, called Property B. We prove that an ergodic hyperfinite equivalence relation of type III₀ whose associated flow has this property is not of product type. A consequence is that a properly ergodic flow with Property B is not approximately transitive. We use Property B to construct a non-AT flow which-up to conjugacy-is built under a function with the dyadic odometer as base automorphism.
We prove a ratio ergodic theorem for non-singular free and actions, along balls in an arbitrary norm. Using a Chacon–Ornstein type lemma the proof is reduced to a statement about
the amount of mass of a probability measure that can concentrate on (thickened) boundaries of balls in . The proof relies on geometric properties of norms, including the Besicovitch covering lemma and the fact that boundaries of balls have lower dimension than the ambient space. We also
show that for general group...
We show that a dissipative, ergodic measure preserving transformation of a σ-finite, non-atomic measure space always has many non-proportional, absolutely continuous, invariant measures and is ergodic with respect to each one of these.
Currently displaying 1 –
5 of
5