The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Une version feuilletée équivariante du théorème de translation de Brouwer

Patrice Le Calvez (2005)

Publications Mathématiques de l'IHÉS

The Brouwer’s plane translation theorem asserts that for a fixed point free orientation preserving homeomorphism f of the plane, every point belongs to a Brouwer line: a proper topological embedding C of R, disjoint from its image and separating f(C) and f–1(C). Suppose that f commutes with the elements of a discrete group G of orientation preserving homeomorphisms acting freely and properly on the plane. We will construct a G-invariant topological foliation of the plane by Brouwer lines. We apply...

Currently displaying 1 – 2 of 2

Page 1