The search session has expired. Please query the service again.
We extend the work of Bielefeld, Fisher and Hubbard on critical portraits to arbitrary postcritically finite polynomials. This gives the classification of such polynomials as dynamical systems in terms of their external ray behavior.
We give a description of possible sets of cycle lengths for distance-decreasing maps and isometries of the ring of n-adic integers.
It is well known that the Hubbard tree of a postcritically finite complex polynomial contains all the combinatorial information on the polynomial. In fact, an abstract Hubbard tree as defined in [23] uniquely determines the polynomial up to affine conjugation. In this paper we give necessary and sufficient conditions enabling one to deduce directly from the restriction of a quadratic Misiurewicz polynomial to its Hubbard tree whether the polynomial is renormalizable, and in this case, of which type....
The main focus of combinatorial dynamics is put on the structure of periodic points (and the corresponding orbits) of topological dynamical systems. The first result in this area is the famous Sharkovsky's theorem which completely describes the coexistence of periods of periodic points for a continuous map from the closed unit interval to itself. One feature of this theorem is that it can be proved using digraphs of a special type (the so-called periodic graphs). In this paper we use Markov graphs...
We show that all periods of periodic points forced by a pattern for interval maps are preserved for high-dimensional maps if the multidimensional perturbation is small. We also show that if an interval map has a fixed point associated with a homoclinic-like orbit then any small multidimensional perturbation has periodic points of all periods.
We prove some results concerning the entropy of Darboux (and almost continuous) functions. We first generalize some theorems valid for continuous functions, and then we study properties which are specific to Darboux functions. Finally, we give theorems on approximating almost continuous functions by functions with infinite entropy.
We study the preservation of the periodic orbits of an -monotone tree map
in the class of all tree maps
having a cycle with the same pattern as . We prove that there is a period-preserving injective map from the set of (almost all) periodic orbits of into the set of periodic orbits of each map in the class. Moreover, the relative positions of the corresponding orbits in the trees and (which need not be homeomorphic) are essentially preserved.
This paper is the first one of a series of two, in which we characterize a class of primary orbits of self maps of the 4-star with the branching point fixed. This class of orbits plays, for such maps, the same role as the directed primary orbits of self maps of the 3-star with the branching point fixed. Some of the primary orbits (namely, those having at most one coloured arrow) are characterized at once for the general case of n-star maps.
This paper is the second part of [2] and is devoted to the study of the spiral orbits of self maps of the 4-star with the branching point fixed, completing the characterization of the strongly directed primary orbits for such maps.
For a continuous map on a topological graph containing a loop it is possible to define the degree (with respect to the loop ) and, for a map of degree , rotation numbers. We study the rotation set of these maps and the periods of periodic points having a given rotation number. We show that, if the graph has a single loop then the set of rotation numbers of points in has some properties similar to the rotation set of a circle map; in particular it is a compact interval and for every rational...
We prove the C¹-density of every -conjugacy class in the closed subset of diffeomorphisms of the circle with a given irrational rotation number.
In this paper we study the structure of the projections of the finite cutting segments corresponding to unimodular substitutions over a two-letter alphabet. We show that such a projection is a block of letters if and only if the substitution is Sturmian. Applying the procedure of projecting the cutting segments corresponding to a Christoffel substitution twice results in the original substitution. This induces a duality on the set of Christoffel substitutions.
In his classical paper [Ann. of Math. 45 (1944)] P. R. Halmos shows that weak mixing is generic in the measure preserving transformations. Later, in his book, Lectures on Ergodic Theory, he gave a more streamlined proof of this fact based on a fundamental lemma due to V. A. Rokhlin. For this reason the name of Rokhlin has been attached to a variety of results, old and new, relating to the density of conjugacy classes in topological groups. In this paper we will survey some of the new developments...
Currently displaying 1 –
20 of
21