Invariant foliations and stability in critical cases.
Let I be a real interval, J a subinterval of I, p ≥ 2 an integer number, and M1, ... , Mp : Ip → I the continuous means. We consider the problem of invariance of the graphs of functions ϕ : Jp−1 → I with respect to the mean-type mapping M = (M1, ... , Mp).Applying a result on the existence and uniqueness of an M -invariant mean [7], we prove that if the graph of a continuous function ϕ : Jp−1 → I ...
We survey recent papers on the problem of backward dynamics in economics, providing along the way a glimpse at the economics perspective, a discussion of the economic models and mathematical tools involved, and a list of applicable literature in both mathematics and economics.
This paper shows a simple construction of continuous involutions of real intervals in terms of continuous even functions. We also study smooth involutions defined by symmetric equations. Finally, we review some applications, in particular a characterization of isochronous potentials by means of smooth involutions.
In this paper, by using an iterative scheme, we advance the main oscillation result of Zhang and Liu (1997). We not only extend this important result but also drop a superfluous condition even in the noniterated case. Moreover, we present some illustrative examples for which the previous results cannot deliver answers for the oscillation of solutions but with our new efficient test, we can give affirmative answers for the oscillatory behaviour of solutions. For a visual explanation of the examples,...
We work with a fixed N-tuple of quasi-arithmetic means generated by an N-tuple of continuous monotone functions (I an interval) satisfying certain regularity conditions. It is known [initially Gauss, later Gustin, Borwein, Toader, Lehmer, Schoenberg, Foster, Philips et al.] that the iterations of the mapping tend pointwise to a mapping having values on the diagonal of . Each of [all equal] coordinates of the limit is a new mean, called the Gaussian product of the means taken on b. We effectively...