R-and T-Groupoids: A Generalization of Groups.
Page 1 Next
M.A. Taylor (1975)
Aequationes mathematicae
Mohamadi, M., Cho, Y.J., Park, C., Vetro, P., Saadati, R. (2010)
Journal of Inequalities and Applications [electronic only]
Kalinowski, Józef (2006)
Beiträge zur Algebra und Geometrie
Kalabušić, S., Kulenović, M.R.S. (2004)
Advances in Difference Equations [electronic only]
Hengkrawit, Charinthip, Laohakosol, Vichian, Udomkavanich, Patanee (2010)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Erbe, Lynn, Peterson, Allan (2007)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
Gselmann, Eszter (2009)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Zafer, A. (ed.), Berezansky, L. (ed.), Diblík, J. (ed.) (2010)
Advances in Difference Equations [electronic only]
Paweł Woźny (2003)
Applicationes Mathematicae
A method is given to find a recurrence relation for the coefficients of the series expansion of a function f with respect to classical orthogonal polynomials of a discrete variable, which follows from a linear difference equation satisfied by f.
Bernard Randé (1993)
Journal de théorie des nombres de Bordeaux
On sait (Cobham) qu’une suite - et -automatique est une suite rationnelle. Une question de Loxton et van der Poorten étend ce résultat au cas - et -régulier. On montre dans cet article que, si une suite vérifie une récurrence - et -mahlérienne d’ordre un, elle est rationnelle.
Pl. Kannappan, B.R. Ebanks, C.T. Ng (1988)
Aequationes mathematicae
Tiryaki, Aydin, Misir, Adil (2008)
Advances in Difference Equations [electronic only]
CHARLES H. FRANKE (1973)
Aequationes mathematicae
Risteski, Ice B. (1999)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Rafał Kapica, Janusz Morawiec (2013)
Banach Center Publications
It has been proved recently that the two-direction refinement equation of the form can be used in wavelet theory for constructing two-direction wavelets, biorthogonal wavelets, wavelet packages, wavelet frames and others. The two-direction refinement equation generalizes the classical refinement equation , which has been used in many areas of mathematics with important applications. The following continuous extension of the classical refinement equation has also various interesting applications....
Marek Kuczma (1980)
Annales Polonici Mathematici
The existence of a unique solution φ of equation (1) is proved under the condition that f: I → I is convex or concave and of class in I, 0 < f(x) < x in I*, and f’(x) > 0 in I. Here I = [0, a] or [0, a), 0 < a ≤ ∞, and I* = I 0.
Marek Cezary Zdun (1985)
Aequationes mathematicae
Detlef Laugwitz (1993)
Aequationes mathematicae
J. GER, A. SMAJDOR (1971)
Aequationes mathematicae
I. Daubechies, A. Cohen, G. Plonka (1997)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Page 1 Next