Mikusiński functional equation on a hexagon.
The classical Steinhaus theorem on the Minkowski sum of the Cantor set is generalized to a large class of fractals determined by Hutchinson-type operators. Numerous examples illustrating the results obtained and an application to t-convex functions are presented.
This second Part II, which follows a first Part I for the discrete-time case (see [DijkSl1]), deals with monotonicity and comparison results, as generalization of the pure stochastic case, for stochastic dynamic systems with arbitrary nonnegative generators in the continuous-time case. In contrast with the discrete-time case the generalization is no longer straightforward. A discrete-time transformation will therefore be developed first. Next, results from Part I can be adopted. The conditions,...
In two subsequent parts, Part I and II, monotonicity and comparison results will be studied, as generalization of the pure stochastic case, for arbitrary dynamic systems governed by nonnegative matrices. Part I covers the discrete-time and Part II the continuous-time case. The research has initially been motivated by a reliability application contained in Part II. In the present Part I it is shown that monotonicity and comparison results, as known for Markov chains, do carry over rather smoothly...
Let G be a second countable locally compact nilpotent group. It is shown that for every norm completely mixing (n.c.m.) random walk μ, αμ + (1-α)ν is n.c.m. for 0 < α ≤ 1, ν ∈ P(G). In particular, a generic stochastic convolution operator on G is n.c.m.
We consider a motion of spiral-shaped piecewise linear curves governed by a crystalline curvature flow with a driving force and a tip motion which is a simple model of a step motion of a crystal surface. We extend our previous result on global existence of a spiral-shaped solution to a linear crystalline motion for a power type nonlinear crystalline motion with a given rotating tip motion. We show that self-intersection of the solution curves never occurs and also show that facet extinction never...